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Abs t rac t 

A mathematical analysis of the hydrodynamic semiconductor device equations is developed 
using characteristic variable transformations. This theoretical treatment of the transport equa
tions uses the eigenvalue structure of the associated flux Jacobian matrices to construct local 
projections from the characteristic variables to enforce boundary conditions on the primary solu
tion variables. The one-dimensional hydrodynamic model with both parabolic and nonparabolic 
energy band structure is first analyzed and the implications for discrete solution approximations 
are discussed. The analysis is then extended to the two-dimensional case. Some aspects of the 
implementation for different (subcritical and supercritical) transport situations and the associ
ated boundary conditions are also addressed. 

1 Introduction 

In the present work we summarize the methodology and results obtained from a recent analysis 
of representative parabolic and nonparabolic energy band models for the hydrodynamic device 
equations. The details of the study are not presented here due to space limitations, and may 
be found in our poster. We also consider the related problem of specifying absorbing boundary 
conditions tha t are consistent with the local type of the system of hydrodynamic device PDE's at 
artificial boundaries. The approach of characteristic transformations is used to define appropriate 
local projections for the boundary conditions. These in turn lead to a well-posed problem and 
a discrete model with approximately non-reflecting boundary conditions. Both subcritical and 
supercritical t ransport situations are considered. We first consider the one-dimensional problem 
under both parabolic and non-parabolic energy band assumptions. The heat flux term, formally 
an unknown which must be determined from higher-order moments of the Boltzmann equation, 
is neglected in our analysis under the assumption tha t its diffusive effect on the average energy is 
small at the boundaries. Typically, if not neglected, it is treated phenomenologically in existing 
models via a Fourier law. Lundstom [5] discusses various methods of treating the heat flux term. 
Gardner [1] has shown that the mathematical classification of the resulting P D E system may be 
affected by the choice of heat flux model. We then extend our one-dimensional analysis to the two-
dimensional hydrodynamic model. Some comments on the implementation in numerical schemes 
are given, and a remark on the three-dimensional extension concludes the t reatment . 

2 Analysis 

We begin with the divergence form of the one-dimensional t ransport equations 
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All we require is that E(U) and S(U) may in general be nonlinear functions of U, but not of its 
derivatives. Using the chain rule for the convective flux term in (1), 

£ + A < U ) £ = S<U,, W 

where A(U) = ^ | { P . 
Our treatment of the system (2) follows the theory described by Witham [6], and serves to 

motivate the higher-dimensional case. First, (2) is a first order, quasilinear system of partial 
differential equations. Second, by definition, (2) is hyperbolic if A has real eigenvalues, as well as 
a complete set of linearly independent eigenvectors (e.g., see [4]). 

Besides determining the classification and behavior of the system (2), or equivalently, (1), 
the eigenvalues of the Jacobian matrix A also determine the characteristic curves. In turn, the 
characteristic curves determine the directions along which waves propagate through the domain. 
Let the characteristic curves be regarded as parameterized in time, and let the eigenvalues be 
denoted A&,fc = 1,2,3. Then the characteristic trajectories are defined as the solution of the 
associated characteristic ordinary differential equations ^ | = A*. It follows that the eigenvalues of 
the system correspond physically to the propagation speeds of each wave, and since the eigenvalues 
of A(U) are functions of the state variables, they will, in general, vary through space and time. 

Next, we seek a change of dependent variables from U to U such that ^ = ^sc^r- Let 

T = ^ . Then ^ = T^f. If T is invertible, we may solve for the partial derivative of the new 

variable, ^ ^ T " 1 ^ . 
If the matrix T is a modal matrix whose columns are the eigenvectors of A, then it can be shown 

that the differential operator may be decoupled. If the system (2) is hyperbolic, then the matrix 
T has linearly independent columns, and is therefore invertible. Furthermore, the left eigenvectors 
of A are the rows of T _ 1 , so that the product T - 1 A T is a a similarity transformation on the 
matrix A. The result is therefore a diagonal matrix, and the differential operator is decoupled. 
The component of this system associated with the kth eigenvalue is 

Finally, the transport equations take on a particularly simple form if one notes that the left hand 
side of (3) is the total derivative of Uk along a characteristic trajectory x = x(t) with associated 
wave speed A&. These trajectories are exactly the characteristic curves defined above. Hence, the 
characteristics form of the transport equations can be written 

DUk - dx x , 
~Dt=Sk°nli= *' k=1'2'3" (4) 

At this point, one could discretise (4) directly and thereby construct a solution locally, by the 
classical method of characteristics, i.e., solving locally for the characteristic curves and advancing 
the solution incrementally along the characteristics. This need not be done in practice, but such 
an exercise is fruitful when one is considering questions such as the correct number of boundary 
conditions and the domain of dependence. The details of such a construction are well known, and 
may be found, for example, in [6]. From the persepctive of the present study, an important result is 
that the number of boundary conditions applied at inflow and outflow boundaries should be equal to 
the number of characteristics pointing into the region. Furthermore, in order for the problem to be 
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well-posed, the boundary conditions should not determine the Riemann variables which correspond 
to outgoing characteristics. 

The multidimensional case may be handled by the same approach, although it is no longer 
possible to decouple the differential operator. The flux Jacobian associated with a directional 
derivative of the flux vector locally orthogonal to the boundary may be used to obtain the matrix 
T required for the projections. 

3 Implementing The Boundary Conditions 

A procedure for implementing the boundary conditions for the two-dimensional problem in a numer
ical scheme is as follows: the left eigenvectors are used to separate the flow variables into incoming 
and outgoing waves. Next, those quantities corresponding to incoming waves are specified explicitly 
as boundary data, and those quantities corresponding to outgoing waves evolve from the interior 
PDF solution. Finally, the corrections to the state vector are obtained from the right eigenvectors 
of the flux Jacobian. Let the correction to the state vector that is predicted by the numerical solver 
be denoted 6U p . Then, the specified change in the kth Riemann variable is 

, _ / 0 if Afc < 0 

Finally, the correction to the state vector for boundary condition specification to be applied through 
the next time step at an inflow or outflow boundary is given by applying the modal matrix T: 

6VS = TJU S , (6) 

where T is the modal matrix of the flux Jacobian and (6) is evaluated at the boundary in question. 
In summary, there are the following four cases, illustrated here for the two-dimensional case: 

Supercri t ical Outflow: All eigenvalues are positive. No boundary conditions are specified. 

Supercritical Inflow: All eigenvalues are negative. Hence 8JJS = 0 so that 8XJa = 0, and all 
components of U are specifiedby the problem data. 

Subcrit ical Outflow: Only one eigenvalue is negative. Therefore only one piece of information 
should be specified. 

Subcritical Inflow: Three eigenvalues are negative. Thus three pieces of information should be 
specified. 

4 Concluding Remarks 

We have performed an eigenvalue analysis of the quasilinear, first order, time dependent systems 
of partial differential equations which assert the continuity of carrier mass, average momentum, 
and average energy. Our results show that in the special case of parabolic energy bands, the 
assumption of negligible drift kinetic energy is sufficient to change the mathematical classification 
of the system. If this assumption is made, the eigenvalues of the system become complex: there 
are no real characteristics. Conversely, retaining the drift kinetic energy results in a system of 
equations that is hyperbolic in time. The method of characteristics can then be brought to bear 
on the problem of specifying appropriate boundary conditions. Furthermore, we have obtained 
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absorbing boundary conditions that can be applied at boundaries that are artificial in the sense 
that they must be introduced solely to facilitate a device simulation. Finally, we have shown that a 
particular nonparabolic energy band model recently proposed is not hyperbolic in time. We suspect 
that the reason for this is that the drift kinetic energy is neglected, because this approximation has 
a similar effect on the parabolic band model. 

In the computational fluid dynamics community, the use of absorbing boundary conditions for 
hyperbolic transport problems is widespread, and is known to provide increased robustness and 
more rapid convergence of the numerical solver (see e.g. [2, 3]). This is because disturbances 
that are generated during the iteration are convected out of the domain, instead of reflected from 
the boundaries until dissipated by numerical viscosity. Careful treatment of artificial boundaries 
helps to ameliorate the sensitivity of the solution with respect to their placement. Consequently, 
"windowing" a simulation on a given subregion may be carried out. This is possible because the 
carrier density, average momentum, and energy are not prescribed independently of each other: as a 
wave passes through a boundary it is allowed to produce changes in combinations of the components 
of the state vector which are defined by its projection onto the corresponding left eigenvector. 
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