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Abstract 

The propagation of an electromagnetic wave through a variable complex dielectric wave-
guiding medium is modeled by the two transverse components of the magnetic field on a two 
dimensional domain, perpendicular to the propagation direction. The large sparse complex non-
hermitian eigenvalue problem for the spurious-mode-free discretization is solved very efficiently 
by an iterative Chebyshev-Arnoldi algorithm. The key to this efficiency is an analysis of the 
eigenvalue problem in which the location of the nonbound spectrum and the rapidly attenuating 
modes is determined a priori. The eigenvalues corresponding to bound modes are selectively 
enhanced by suitable adaptation of the Chebyshev acceleration. The nonbound modes and the 
rapidly attenuating bound modes are removed in an outer iteration. This dual strategy of pre
conditioning and selection rapidly isolates those few modes (typically less than 20) which are 
relevant from an engineering point of view. 

1 Introduction 

We present a computational approach to the solution of two-dimensional eigenvalue problems in 
semiconductor laser simulation based on an efficient implementation of the iterative Chebyshev-
Arnoldi algorithm. Our approach greatly reduces memory requirements because it allows the matrix 
of the discretized problem to be stored in sparse form. The computational complexity is reduced 
significantly by computing only those eigenvalues and eigenvectors which correspond to propagating 
modes properly confined to the active region of the laser. This allows us to employ extensive 
nonuniform meshes with many grid points on which the discretization error can be controlled. 

Following the approach in [1], we discretize the electromagnetic wave equation 

where the relative permittivity e(x,y) is complex. Assuming an axial dependence of el^z yields 
a complex nonhermitian generalized eigenvalue problem, Ku = -/32Mu. Here u is formed by 
concatenating Hx and Hy in the standard grid ordering. Thus K has two diagonal blocks of five 
bands each for Hx and Hy, and two off-diagonal blocks of three bands each for the coupling terms. 
On the right hand side M is a positive diagonal matrix. This generalized eigenvalue problem is 
recast as a standard eigenvalue problem, Av = —(32v, where A = M~1I2KM~1'2 and v = Mll2u. 
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2 Solution of the Eigenvalue Problem 

In our computations we use a uniform grid in the core region. The mesh spacing grows exponentially 
as the lines extend far out into the cladding. Such grids both resolve rapid oscillations of higher 
modes in the core region and extend sufficiently far to allow the modes to decay exponentially 
into the cladding. With two complex field components at each grid point, such grids give rise 
to very large scale eigenvalue problems. However, only a few eigenvalues correspond to confined, 
propagating modes. To characterize propagation in terms of the eigenvalue, we write — ffi — £+i( = 
~(V + i/L)2> s o t n a t t n e ^ ^ dependence e^z has real part e~z/L, indicating a characteristic 
propagation length L. As will be shown elsewhere, the propagating modes then satisfy 

(2) 

where LQ is the minimum acceptable propagation length. 
To characterize the confined modes, we focus our attention on the cladding, where we may use 

the scalar Helmholtz equation for Hz 

-dp(pdpHz) + \deeHz + ( « V - f)Hz = 0. (3) 

The switch to the scalar equation in polar coordinates is to clarify the discussion—this is a quick 
study rather than a rigorous proof. In this spirit, we assume a solution in the cladding with radial 
dependence e_(1/ 'T+,*^', i.e., a characteristic transverse confinement length r . Then Eq. (3) becomes 
(1 / r + iK)2Hz - (1 /T + in)Hz/p + dooHz/p

2 + (u2p.e - /32)HZ = 0. As will be shown elsewhere, the 
confined modes then satisfy 
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where TQ is the maximum acceptable transverse confinement length and Cdad is the maximum 
permittivity attained on a significant section of cladding. 

We use an iterative Chebyshev preconditioned Krylov subspace method to converge specifically 
to these confined modes. We precondition with the Chebyshev polynomial adapted to the reference 
ellipse through Ar, 

^>-»(¥)M^)-
We use a reference ellipse tangent to the confinement cutoff parabola with Ar = — w2/i€ciad — 1/T$, 
left focus d — c = -w2/iCdad, and right focus d + c an upper bound for the spectrum, as determined 
by Gerschgorin disks. 

As n increases, |pn(A)| approaches [«(A))n, where 
q(A) + (o(A)2 - e2)*/2 

1 ; a(Ar) + ( a (A r )
2 - c 2 ) i / 2 

and a(A) is the major semiaxis of the ellipse through A with center d and real foci d — c, d + c [2, 3]. 
Thus, the strength of the preconditioning of A depends on the distance between the confocal ellipses 
through A and Ar. The efficient computation of matrix-vector products of the form vn = [pn(A)]vo 
is described in [1]. 

The Chebyshev-Arnoldi algorithm generates an orthonormal basis Vm for the Krylov subspace 
Km\Pn(A\vQ) = spa.n{voJlpn(A)]v0,\pn(A)]2vo,...,\pn(A)]m-1vo}. The Chebyshev polynomial 
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Figure 1: Channel waveguide. Normalized propagation constant B — 
(P/ko)2 - «1 vs. normalized 

e2 - € i 
frequency V = (2/i/A)(e2 - ei)1/2 , with k0 the free-space wavenumber. The computational domain 
is 60^m x 32/rni, with h = 3/xm, ei = 2.13e0 and e2 = 2.25e0. The discretization is on a 69 X 38 
nonuniform rectangular grid. 



90 

preconditioning greatly magnifies the separation of the eigenvalues satisfying Ineq. (4) relative 
to the rest of the spectrum, while leaving the eigenvectors unchanged. Convergence towards the 
desired eigenvectors is thus accelerated [4]. After finding the orthonormal basis Vm, we take a 
Rayleigh quotient Cm = V£AVm of the operator A over the Krylov subspace. The spectral decom
position Cm = YmAmY^1 is found using standard EISPACK routines. The approximate eigenvalues 
and eigenvectors of A are then Am and VmYm. The best confined of these (i.e, those with smallest 
r ) satisfying both the confinement and propagation conditions Ineq. (4) and (2) are combined into 
a new starting vector vo, and the whole process is repeated with stronger preconditioning, i.e., 
polynomials of higher degree n, until the residuals are within a prescribed tolerance. We have 
found this outer iteration to be effective in removing unwanted modes. For typical problems, as in 
Fig. 1 on a 69 X 38 mesh, convergence to the few confined modes takes a few dozen outer iterations 
for a total of about 25 CPU minutes on a Sparc 2. In the near future we plan to incorporate this 
solver in the laser simulation package MINILASE [5]. 

3 Conclusion 

Realistic modeling of microelectronic lasers requires the solution of complex eigenvalue problems 
that are very large and sparse. The approach for the real nonsymmetric eigenvalue problem, 
presented in [1], easily generalizes to the complex nonhermitian eigenvalue problem in laser simula
tion. In our approach, only the eigenvectors for propagating, confined, modes are computed. The 
Chebyshev-preconditioned Arnoldi projection method has been demonstrated to be very suitable 
for this application. 
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