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A b s t r a c t 
The Wigner-Poisson equation is the most successful basis for transient simulations of 

quantum-effect semiconductor devices so far. 
We present a (second order) operator splitting method for the time-discretization of 

this non-linear pseudo-differential equation. For the application to quan tum devices some 
important model extensions are discussed (boundary conditions, many-body effects). 

1. I n t r o d u c t i o n . In this paper we shall discuss operator splitting methods to discretize 
the linear Wigner equation and the coupled Wigner-Poisson system. The Wigner formal­
ism, which represents a phase-space description of quantum mechanics, has in recent years 
a t t racted considerable at tent ion of solid s tate physicists for including quantum effects in 
the simulation of ul tra-integrated semiconductor devices, like resonant tunneling diodes, 
e.g. ([7], [8], [4]). Also, the Wigner (-Poisson) equation has recently been the objective of 
a detailed mathematical analysis ([11] and references therein). 

The real-valued Wigner (quasi) distribution function w = w(x, v, t) describes the motion 
of an electron ensemble in the 2<i-dimensional position-velocity (a:, y)-phase space under 
the action of the electrostatic potential V. In the absence of collision and scattering, and in 
the effective-mass approximation, the time evolution is governed by the Wigner equation 
(q denotes the unit charge and m* the effective mass of the electron): 

wt + v • Vxw + £-G[V]w = 0, x,veRd, d- 1,2 or 3, (1.1) 

with the pseudo-differential operator 

Q[V]w = iSV (x, \VV, t)w= (1.2) 

= (2^F JR* JR*, 8V(x,r,,t)w(x,v'tt)e«v-v'>"dv'dTi, 

6V(x, iM) = * f [V (x + £rti, t)-V(x- ^ r , , t)] . 

In this kinetic framework the particle density n and the current density J are defined by 
n(x,t) = J w(x,v,t)dv and J(x,t) = —qfvw(x,v,t)dv. In order to account for electron-
electron interactions in a simple mean-field approximation, (1.1) has to be coupled to the 
Poisson equation AV(x, t) = q/e [n(x, t) — D(x)], where e and D(x) denote the permitt ivity 
and the doping profile of the semiconductor, respectively. 

The Wigner function representation is equivalent to the conventional wave function 
formalism ([17], [10]), and any L2-solution of the Wigner equation can be expanded into 
a series of pure states: 
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w = J2%i ^jwj, Ay > o, Y^jLi XJ = !i C1-3) 

where each Wj corresponds via 

wj(x, v, t) = ( 2 » ) " * / R , tfj (x + 5^1,, *) ^ (* - &T,, t) e^drj (1.4) 

to a pure s tate wave function if>j, whose time evolution is governed by the Schrodinger 
equation. Although theoretically equivalent, the Wigner formalism appears much more 
successful in the application of numerically simulating quantum-effect devices: In the ki­
netic framework boundary conditions can be formulated much more naturally, and this will 
be crucial for an effective coupling with (semi-) classical models (based on the Boltzmann 
equation, e.g.) away from the active region of the semiconductor. Moreover, a transient 
simulation based on the Schrodinger formalism would require to include a great number of 
pure states in (1.3) ([4]), which would compensate the higher dimensionality of the Wigner 
approach. 

Mainly due to the non-local pseudo-differential operator, the numerical solution of the 
Wigner equation represents a major computational task, especially for multi-dimensional 
structures and with the model extensions discussed later in §3. It is, therefore, of paramount 
importance to develop efficient and accurate numerical schemes, which should also reflect 
the conservation of some important physical quantities. 

During the last few years various numerical methods have been used for the Wigner 
equation: finite difference schemes ([7], [12]), spectral collocation methods ([13]) and 
a deterministic particle method ([1]). In this paper we shall discuss operator splitting 
methods, which have been first used by plasma physicists ([16]). In §2 we present the 
numerical scheme for the Wigner (-Poisson) equation and its stability and convergence 
properties from the mathematical point of view. In §3 the quan tum transport model 
will be extended to be suitable for simulations of quantum devices and the corresponding 
modifications of the splitting scheme will be outlined. 

2 . O p e r a t o r S p l i t t i n g S c h e m e . 

In this section, we- present the basic ideas of the operator splitting method for the 
Wigner-Poisson equation, which reads in scaled form 

wt + v- Vxw + Q[V]w = 0, (2.1a) 

AV(t) = n(t)-D. (2.1b) 

For the mathematical details and proofs we refer the reader to [2], [3]. 

First we will illustrate the scheme for the linear, whole space case with a prescribed, 
cons tant - in- t ime potential V = V(x) € L°°(Rd). The splitting method for (2.1a) consists 
in splitting the transport operator A = —u • V z and the pseudo-differential operator 
B = — &[V] for each time step of length At. Then the resulting evolution equations are 
solved successively: 

{ ut = Axi, tn <t < tn+i 

u(tn) = wni (2.2) 
u>n+$. : = u ( i n + 1 ) , 
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Ut = Bu, tn < t < <n+l 

u(tn) = wnH, (2.3) 

t wn+1 := w(t„+i) 

where ion and tOn+i denote approximations of ty(i) at tn and tn+i = tn + At . This splitting 
method is particularly suitable for the Wigner equation since the operators A and B act 
in orthogonal directions of phase-space, and since the two split evolution equations can be 
solved explicitly: 

wn+i.(x, v) = wn(x — vAt, u), (2-4) 

( * > n + 1 )(x, if) = (Fvwn+i_)(x,V)e-iAt «v<*">, (2.5) 

where Tv denotes the Fourier transform with respect to v. Because of this explicit solvabil­
ity, we shall first consider the convergence properties of the semi-discretization (2.2), (2.3). 
The conservation of total charge / / w dx dv and the L 2 -no rm is readily obtained from the 

above solution formulas: Fn+ l | | 2 = I F n + j i H2 = ||u7„[J2, which yields stability of the split­

ting scheme. Since A and B generate Co-groups of isometries on L2(R2d) (etA,etB;t € R), 
the L2-convergence is an immediate consequence of Trotter 's product formula for linear 
semigroups (see [5] e.g.): 

N 
w(t) _ pt(A+B).nI W lim^v- eTrBeTrA 

w (2.6) 

THEOREM 2 . 1 . Let V e L°°(nd) and the initial Wigner function w1 E L2(R2d). Then, 
the operator splitting method (2.2), (2.3) converges in L2(R2d) as At —• 0. 

Since the operators A and B do not commute, the algorithm is accurate only to first 
order. For a given t ime dependent potential, V(t) has to be evaluated at tn = (<„ + tn+\ ) /2 
for the split evolution equation (2.3). We then obtain the following convergence result: 

T H E O R E M 2 .2. LetV e C1(\0,T\,Loo(Ri))r\C([0,T\,W1>oo(Rd)),AV G C([Q,T},L°°(Rd)), 
and w1, vw1, Vxw

J, Aw1 € L2(R2d). Then 

w(t)~ 

holds, with C independent oft € [0, T]. 

-,N 
ebBekA 

w < G-
— N 

(2.7) 

An algorithm based on the step-forward operator e~t~Ae^tDe~2~A ("Strang splitting") 
is second order accurate. But since the adjacent applications of the operator e"5~ can be 
combined into one operation (except for the first and last half-step in a calculation), this 
algorithm is almost only as expensive as the above first order scheme. 

A simple calculation, based on the expansion (1.3), (1-4), shows that the presented 
operator splitting method for the Wigner equation is equivalent to splitting the operators 
ih/2m*Ax and iq/hV(x,t) in the Schrodinger equation for every pure s ta te if>j. (In [6], a 
Strang splitting method for the Schrodinger equation was used in the simulation of lateral 
surface superlattices.) Therefore, the expansion coefficients Xj of the numerical iterates 
to,, will s tay constant in time, which shows that all wn are physical Wigner functions 
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(Xj > 0 ,^ , -^ i = !)• Since the particle density is expressed as n(x,t) = Ylj ^jl^ii00^)^ 
in the Schrodinger formalism, this also implies the positivity conservation of n = f w dv 
in the numerical scheme (although the Wigner function w takes negative values). 

Although, theoretically, both steps of the splitting method can be carried out exactly, 
approximations will have to be made if a concrete finite dimensional representation of the 
solution is chosen. Because of the definition of the pseudo-differential operator via Fourier 
transforms it is natural to expand the Wigner function in trigonometric functions in the 
velocity direction (which are eigenfunctions of 0[V]). The resulting spectral collocation 
method is then of spectral accuracy ([13], [14]). For notational simplicity we just illustrate 
the one-dimensional situation: 

w(x,vm,t)^Y,^-M^^^yatlVrn^ vrn = m- rn =-M + 1,..., M, (2.8) 

with the inverse Fourier transform 

w(x, to t) = (2M/3(n))-1 E f = - M + i «"(*.»«, t)e-ia»v", / % ) = 1 + % i | - M). (2.9) 

In this framework (2.5) is discretized as 

*n+i(x,n)={ . + 2
 1 # (2-10) 

w. n+ j i ( x , / x ) , \fi\-M, 

and n(x, t) ~ — w(x, 0, t) holds. 
When the Wigner function is discretized in ^-direction with a grid spacing Ax, such 

that At is an integer multiple of Sjf-Ax, then the discretization of (2.4) can be carried 
out exactly. In this case, no artificial diffusion (normally inherent to difference methods) 
is introduced by the numerical scheme. For smaller time steps, however, interpolation 
between neighboring a:-gridpoints has to be used. 

We will now proceed to the coupled Wigner-Poisson problem (2.1a,b). Again, transport 
operator and pseudo-differential operator are split like in (2.2), (2.3). But the nonlinear 
operator B is now defined by Bu = — 0[F[w]]u, where the potential V[u] solves the Poisson 
equation (2.1b), supplemented with appropriate decay or boundary conditions on infinite 
or bounded (spatial) domains, respectively. Since fRd(Bu)(x,v)dv = 0 holds, the nonlinear 
evolution equation 

Mi = Bu, tn<t< tn+1 (2.11) 

shows that the density and hence the potential V[u], associated to its solution u(t), are 
constant in time. Therefore (2.11) can be solved explicitly like in the linear case by using 
the potential V[wn+i ] in (2.5). 

First order convergence of the scheme (2.2), (2.11) and second order convergence of the 
corresponding "Strang splitting" have been established in [2]. For the nonlinear analysis 
in I P , the weighted Z-2-space £2(R2; 1 + \v\) has to be chosen in the underlying framework 
to allow for a proper definition of n = J w dv. 

3. Model Extensions for Quantum Device Simulations. 
In this section we discuss some approaches to incorporate important physical mechanisms 

into the Wigner-Poisson model to enable a more realistic description of quantum transport 

file:///fi/-M
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in semiconductor devices. We will present three different aspects, for simplicity separately, 
and their possible realizations in the framework of operator splitting methods. 

a) boundary conditions: For the simulation of resonant tunneling diodes most authors 
([4], [7]) supplemented the Wigner equation (2.1a), posed on a finite re-domain fi C Rd, 
with inflow boundary conditions (BC): 

w(x, u, t) = WQ(X, v, t) for x edQ, v € Rd, r • v < 0, (3.1) 

where r is the outward normal vector on dQ,. If these simulation (or device-) boundaries are 
posed too close to the source of quantum effects (heterojunctions), they represent artificial 
constraints for the dynamic of the system: outgoing waves may be artificially reflected 
by the boundary, instead of being 'absorbed' by the contact. This introduced constraint 
also affects the analytical behavior of the exact Wigner function (less regularity) and its 
discretization. In the splitting scheme (2.2), (2.3) the (spatial) BC (3.1) only supplements 
ut = Au, bu t no BC is needed for (2.3), since B acts in u-direction only. However, 
the numerical i terates wn will not satisfy the BC (3.1), and each step of form (2.2) will 
t ransport this boundary-discontinuity into the domain O. Hence, the order of convergence 
of this ^-discretization is reduced to ^. 

The following scheme modification raises the order of convergence to 1, but still retains 
a decoupled evolution for different velocities: 

ut = Au + Bwn, u(tn) = wny wn+i := u ( t R + 1 ) , (3.2) 
u(x, v, t) = WD(X, U, £), x e 5Q, v G Rd, r • v < 0. 

In one dimension with Q = (—1,1), the solution is given by 

wn+1(x,v) = wn(x - vAt,v) + lJ[x_vAt>x]nn(Bwn)(^v)d^ (3.3) 

where wn denotes the extension of wn by the inflow boundary da ta for a; < — 1, v > 0, and 
a: > 1, v < 0. 

In order to obtain a more accurate ^-discretization, a higher order approximation for 
the BC has to be employed (like 'absorbing BC in [15]). 

b) electron-electron interaction: Most transient simulations of quantum devices use a 
mean-field approximation (via self-consistent coupling to the Poisson equation) to in­
corporate many-body effects into the system, at least in a rudimentary fashion. In the 
framework of the non-linear operator splitting (2.2), (2.11) a refined coupling can readily 
be included, as long as it gives rise to an effective potential Vefr[n] to be inserted in the 
pseudo-differential operator 0(V] . So it is easy to incorporate local exchange-correlation 
potentials ([9]), which, in basic models, are of the form Vex(x,t) = — an(x,t)a. 

c) relaxation-time models: The relaxation-time (RT) approximation is the simplest 
model to account for electron-phonon scattering, bu t it still yields remarkable results in 
device simulations. In [8] the phenomenological relaxation term 1/r [WQ(X,V) — w(x,v, t)] 
serves as the right hand side of (2.1a), coupled to (2.1b). WQ is a steady s ta te of the system, 
satisfying 

v • Vxiu0 + Q[V0]w0 = 0, A F 0 = n 0 - D. (3.4) 
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In this situation w{t) converges to WQ for 'small' r . To reflect this convergence behavior 
in the numerical scheme we symmetrize the RT-Wigner-Poisson equation by subtracting 
(3.4) and split: 

(w - w0)t = -v • Vx(w - WQ) TT(W - WQ), (3.5) 
T(V) 

(u>-u;o)f = -0[V]u; + 0[Vro]u>o, A(V-V0) = n - n0. (3.6) 

Even by allowing for a (more realistic) u-dependence of the RT T(V), (3.5) can be solved 
explicitly. 

In [4] the more theoretically justified relaxation term 

1 n(x,t) . . . 
WQ(X, v) — w(x, v, t) (3.7) 

T [ n0(x) 

was employed. The resulting RT-Wigner-Poisson equation shows no obvious asymptotic 
behavior for large time and can be split as: 

wt = —v • Vxw, (3-8) 

AV = n-D. (3.9) wt = -0[V]w + -
n 

—two — w 
T ["0 

Integrating over v again shows that V stays constant during the step (3.9), which can thus 
be solved explicitly. 
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