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Abstrac t 

Numerical calculation of magnetotransport in quantum wires is performed. Magnetoconductivities 
at T = 100K are evaluated by using the Kubo formula, where the electron-longitudinal optical 
phonon interaction is taken into account. The conductivities consist of two types contributions; 
one is related to the hopping motion between the localized cyclotron motion through the electron-
phonon interaction, aep, and the other is caused by the confinement potential, apo. The magnetic 
field and the wire width dependencies of these two types of contributions are studied. 

1. INTRODUCTION 

Recent developments in maicrofabrication technology have made it possible to produce ultranarrow 
wires of semiconductors. The width of the wires is comparable to the Fermi wavelength, and 
electrons are free only along the wires. Such quantum wires have revealed quite new features 
in transport properties, such as Aharonov-Dohn effect, quantized conductance and conductance 
fluctuations. In addition, the quantum wires provide a possibility to fabricate novel functional 
devices. Usually, it is required to operate such devices at room temperature, where the effects of 
scattering by optical phonons play important roles in conductivity. The purpose of the present 
paper is to study the magnetotransport in high magnetic field. Especially we review the method 
of calculation of the conductance. 

It is well known that the magnetophonon resonances (MPR) are a powerful tool for studying 
electron- optical-phonon interactions in semiconductors [1-4]. An external magnetic field quantizes 
the electron energy into Landau levels leading to singularities in the density of states. When the 
separation of such quantized levels is tuned to a longitudinal optical (LO) phonon frequency, a 
resonant scattering occurs between the two Landau levels and the transverse conductance becomes 
maxima in three- or two-dimensional systems, where the magnetoresistance is measured as a func­
tion of the magnetic field. Vasilopoulos et al. have predicted that the same effect is expected to 
occur in quantum wires [5]. They calculated magnetoconductivity in quantum wires with parabolic, 
confinement potential and found that the resonant condition is modified by the confinement po­
tential. However their calculation is restricted to the case of wide quantum wires and neglects 
the effect of the confinement potential. We calculated the transverse conductivity using the Kubo 
formula in quantum wires with the structure similar to those of Vasilopoulos et al. Our calculation 
revealed that the confinement potential plays a significant role in the case of narrow quantum wires 
and the magnetic field dependence of the conductance exhibits maxima or minima depending on 
the confinement potential [6]. The confinement potential produced by split-gates fabricated on 
a single-heterostructure is parabolic al extremely low electron density. The Coulomb interaction 
results in a flattening of the bottom of the confinement potential, and thus the unharmonicity 
increases with increasing the electron density. The effect of the unharmonicity has been studied 
using square quantum wire model [7]. In this paper, we review the numerical study of the MPll in 



50 

-0.1b 

450nm 

"GaAs 20nmt 

AIGaAs 20nm 

1DEG 

GaAs 

Vg = 0V \ 
T = OK v 

-200 -100 0 
y(nm) 

100 200 

Fi gure 1: The self-consistent results of the potential in a structure shown in the inset 
where the dashed curve represents potential profile along the y-direction in the case of 
empty electron density and the solid curve shows the potential profile in the presence 
of electrons (n = 2x 106cm-1) at OK. 

quantum wires. The model and the electron states of quantum wires are given in Sec. 2. In Sec. 3 
the method to calculate the conductivity is described. The numerical results are given in Sec. 4. 

2. Q U A N T U M W I R E S 

We assume a model of a quantum wire in which ideal two-dimensional electron gas is confined by 
a potential in the ^-direction, and electrons are free only along the wire. In this structure the 
heterointerface is normal to the z-axis. In Fig. 1 we present the self-consistent calculation of the 
potential in a structure shown in the inset, where the dashed curve represents potential profile 
along the y-direction in the case of empty electron density and the solid curve shows the potential 
profile in the presence of electrons (n = 2x 106cm -2) at OK. As seen in the figure, the potential for 
zero electron exhibits parabolic behavior, while the bottom of the potential becomes flat with finite 
electron density due to the Coulomb interaction. Present calculations were made in two different 
potential profiles, parabolic and square well potentials, which correspond to the two extreme cases, 
zero electron and high electron density, respectively. In the present calculations, however, the 
conductivities are evaluated by assuming Boltzmann distribution for electrons, for simplicity. 

When a magnetic field B is applied in the ^-direction, one-electron Hamiltonian for the two-
dimensional system is written as 

-H = —(p + eAf + V(y), ( i ; 

where V(y) is the confinement potential and V(y) = ±mQ2y2 for a parabolic potential, and 

V(y) = Vb, \y\ > \a 
0, otherwise (2) 
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Figure 2: Electron energy Ex(Y) as a function of center coordinate of cyclotron motion 
Y at D = 10T for N = 0 to 9 in a quantum wire of GaAs of a - 200A and V0 = lOOmeV. 
The dashed line shows the square confinement potential. 

for a square well potential. A = (—By,0), fi is the strength of the confinement potential, a is the 
wire width and V0 is the barrier height. 

Calculations of electronic states in the parabolic potential are straightforward and the wave 
functions are well know simple harmonic-oscillator-line solutions. The results are give in our paper 
[6]. 

In the case of the square well potential, the calculations are made as the following. If we set ( = 
\l(eB)ll2 = 1 and wc = eB/m = 1, the Schrodinger equation for eigenfunctions elk£ip^(y ~ Y; Y) 
(Y = l2k) is given by 

1 02 

'2 8y2 ' 2 + hv2 + V(V + Y)\ <PN(V\Y) = EN(Y)ipN(y;Y] (3) 

We discretize this equation in a uniform mesh, yi = -^L+ih, i = 0 ,1 ,2 , . . . ,N, (L ~ 10, h = L/N), 
and calculate eigenfunctions and eigenvalues by the Householder, bisection and inverse iteration 
method. In Fig. 2 we show the eigenvalues EN{Y) as a function of the y-component of the cyclotron 
center Y for a quantum wire of GaAs in which we take a = 200A, V0 = lOOmeV and m - 0.07mO-
We find in Fig. 2 that the lower energy states depend strongly on the location of the cyclotron 
center, while the higher energy states show weak oscillations. 

3. CALCULATIONS OF M A G N E T O C O N D U C T A N C E 

At high magnetic fields, the transverse conductivity axx is determined by the change in the center of 
cyclotron motion along the ar-dircclion, X. Since X is determined by the gradient of the potential 
along the ^-direction, the term X for electrons in the quantum wire consists of two contributions, the 
one by the electron optical-phonon interaction potential Uep(r) and the other by the confinement 



potential V(y). X is given explicitly by the equation of motion and we have 

t _ 1 cWep(r) ( 1 dV(y) 
eB dy eB Oy 

1 Sf/ep(r) , _2 

— < 

+ mQ y, for parabolic potential, 
eB dy 

(4) 
1 OUeJr) . r . 

h Vo6(y - j«) — Vo6(y + ^a), for square potential. 
eB dy 

The first term on the right hand side of Eq. (4) gives the usual conductivity due to hopping motion 
of cyclotron center which is referred as a(.p, and the rest is related to the confinement potential 
giving the conductivity apo. It should be noted that the conductivity apQ will not appear in three-
or two-dimensional systems. 

Calculations of the magnetoconductivity for parabolic potential are reported in Ref. [6] in detail, 
and here we will present numerical calculations of the magnetoconductivity in quantum wires of 
square potential. The conductivity apo is calculated in the same manner as Ref. [6], and we have 
apo = ne2Tpo/m with 

0UcJdY W ) { £ ^ ( ~ ^ - Y;Y)+C(pU*a - y ; 1 ' ) } 2 e ~ / 9 i ? o ( n 

— _____ _ ^ ^5j 

IdY e 0Eo(Y) 

and 

W0(Y) = a_o_Vo _ Idqxdqy " ° J2
N,Y(qx,qy)6r(Eo(Y) + L>o - EN.{Y + t2qx)\ (6) 

N, J Ko{qr + qy) i 

where n is the one-dimensional electron density, ih = (<_>C/Vb)2m, a is the Frohlich coupling constant 
of electron-optical-phonon interaction, U>Q is the LO phonon frequency, iV0 is the occupation number 
of LO phonons, ICQ = (2muJo)il2, $r(E) = T^~1Y/{E2 + T2) (T is the broadening energy), and 

Jhr(<h^y) = \J<pN>(y - (%; Y + Pqxy'*y<po{y\ YWv (7) 

The matrix elements are calculated by the fast Fourier transform (FFT) method. We perform the 
FFT by using the uniform mesh such that the mesh size in fc-space coincides with h in the units of 
£ = 1, and we can readily perform the integration of Eqs. (6) and (5). 

The hopping conductivity is also calculated in the same manner as Ref. [6], and we have aep — 
nc2Tep/m, with 

Tep = J dYr{Y)^E^ / j dYc-PWl (8) 

and 

r O ' ) = aNofi ( - ) J2 fd^d(lvl3t 2°*\,U2JN>Y(^<ly)k(Eo(Y)+"o - EN.(Y + l2qx)). (9) 
\WC/ N, J K0\fIX + (iy) ' 

When we compare Eqs. (6) and (9), we find that these two equations are quite similar and thus 
the evaluation of the two terms given by Eqs. (5) and (8) are straightforward. 
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Figure 3: The calculated result of the second derivative of magnetoconductivity as a 
function of magnetic field in quantum wires of parabolic confinement potential 0 = 1 , 
3, and 5meV at T = 100K. 

4. RESULTS 

In Fig. 3 wc present calculated result of magnetoconductivity as a function of magnetic field in 
quantum wires of parabolic confinement potential 0 = 1,3, and 5meV at T = 1Q0K, where the 
second derivative of the magnetoconductivity with respect to the magnetic field is plotted to show 
the oscillatory structures clearly. We used the following values for the material parameters for 
GaAs: a = 0.07 and u>0 — 36.2meV. In the calculation, we assume that the broadening energy 
is lmeV. For weak confinement potential (fi = lmeV), the magnetoconductivity exhibits maxima 
at resonances, and the feature is quite similar to the case of two-dimensional electron gas. The 
magnetoconductivity consists mostly of the hopping conductivity apo. On the other hand, for 
strong confinement potential (Q = 5meV), the magnetoconductivity shows minima at resonates 
and the magnetoconductivity is dominated by the apo arising from the confinement potential. 

We present calculated results of magnetoconductivity at T = 100K in square potential in Fig. 2, 
where we assumed quantum wires of GaAs of well width a = 200A and barrier heights V0 = 50, 
70 and lOOmoV. We have to note that the calculations of the magnetoconductivity are carried out 
by taking into account electron scattering by LO phonons from the lowest Landau level to higher 
Landau levels. In addition the distribution function of electrons is assumed to be Maxwellian, 
for simplicity. We show the calculated conductivity apo due to confinement potential in Fig. 4(a) 
and the hopping conductivity aep due to electron-phonon interaction in Fig. 4(b) as a function 
of applied magnetic field, where we plotted magnetoconductivity near the fundamental resonance 
region. The conductivity is normalized by <r0 = e/mauiQ. At resonance, c e p exhibits maxima and 
Cpo exhibits minima. These features are very similar to the result of high confinement potential in 
the parabolic case. The resonance is mainly caused by the resonant scattering between the lowest 
two Landau levels, because the electrons occupy the lowest state in Fig. 2 for low density case. The 
ratio of ap„ to acp is found to increase with increasing the potential barrier V0. This behavior is 
similar to that in the quantum wire having the parabolic confinement potential. 
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Figure 4: The calculated conductivity at T = 100K as a function of applied magnetic 
field B for a quantum wire of GaAs as treated in Fig. 2. (a) <xpo represents the con­
ductivity caused by the current carried by electron motion affected by the confinement 
potential, and (b) aep represents that related to the current carried by electron hopping 
motion between the localized cyclotron orbits through electron-phonon interaction. 
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