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Abstract 

Algorithms are presented which advance the state of the art in Monte Carlo device simulation in 
two ways. Firstly, a method of free-flight time calculation using a new self-scattering algorithm is 
described. A piecewise linear total scattering rate allows for an efficient reduction of self-scattering 
events. Secondly, a unique Monte Carlo-Poisson coupling scheme is adopted, which converges faster 
than presently known schemes do. It is based on so-called Monte Carlo-Drift Diffusion coupling, a 
method which can be rigorously justified within the semiclassical Boltzmann transport theory. 

1 INTRODUCTION 

When developing a Monte Carlo code, an ever valid requirement is the reduction of the solu
tion times. Due to the computational burden the use of the Monte Carlo technique has until now 
been restricted to research purposes. However, thanks to both the continuing increase of the power 
of modern computers and the development of more efficient Monte Carlo algorithms, this situation 
is likely to change in the near future. Monte Carlo device simulation will then also become feasible 
as an engineering tool. The topics presented below are intended to be a step in this direction. 

In the one-particle Monte Carlo method, the steady state average of a quantity can be calcu
lated just by sampling the electron trajectory immediately before the scattering events. When 
self-scattering is introduced, the trajectory is sampled much more frequently than it is actually 
required. This increases the computational effort, since for each instance of a self-scattering event 
the electrons state has to.be evaluated. A method for reducing the number of self-scatterings and 
thus produce increased free-flight durations is presented in the next section. In section 3 a new, 
self-consistent iteration method is introduced, and simulation results of submicron MOSPETs are 
discussed in detail. 

2 SELF-SCATTERING 

In a Monte Carlo simulation a stochastic sequence of a free-flight times must be generated ac
cording to a given probability distribution. Using the direct technique [5] one obtains for the 
free-flight time tf the following integral equation, 

/A(k(0 , r ( t ))(f t = - l n ( r ) , (1) 
0 

where r is a random number evenly distributed between 0 and 1, and A(k, r) denotes the momentum-
and space-dependent total scattering rate. However, in order to solve (1) the trajectory k(t)t e(t) 
of the particle must be known. In order to accomplish this, one has to tackle a coupled system of 
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equations consisting of (1) and the equations of motion, h k = — c E(r) and r = v(k). This system 
can be solved either numerically or analytically. A numerical solution requires a discretization of 
time with timesteps At •< A - 1(k,r). This technique is not well suited for efficient implementation 
on scalar computers. Pursuing an analytic solution which is continuous in time one can simplify 
the integral equation (1) by the introduction of a virtual scattering mechanism called self-scattering 
[10]. With the associated self-scattering rate AM(k) the total scattering rate becomes 

r (k , r ) = A(k,r) + A„(k,r) (2) 

The self-scattering does not affect the state of a particle, so, whenever it occurs the trajectory of 
the particle continues unperturbed. In the so called constant T technique the self-scattering rate is 
chosen so that r becomes independent from k and r. Then (1) simplifies to a first-order algebraic 
equation 

r -* /+ ln ( r ) = Q. (3) 

Although the solution for tf is quite trivial, this technique has computational drawbacks. Since 
the total scattering rate is kept artificially high, a high percentage of self-scattering events occurs. 
Improvements of the constant T technique are the piecewise-constant T technique [11] and those 
techniques, which try to optimize a constant T level with respect to the current particle's state [6] 
[9]. All the methods outlined above share the assumption that self-scattering can only be used to 
simplify (1) into (3). An equation of intermediate complexity, yet analytically soluble, is presented 
below. 

Our Ansatz starts with the equation of motion in k space, which we solve analytically under the 
constraint that the electric field is constant within one mesh-cell, 

k = - f = const =>• k(t) = k o - £ - t . (4) 

Here f is related to the electric field, f = -eE/h, and ko denotes the wave vector at the beginning 
of the free flight. Now we deviate from the constant T and allow a linear dependence from k2, 

r(k) = a&2- |-6. (5) 

Inserting in (5) the wave vector k(£), which evolves according to (4) linearly in time, it becomes 
obvious, that T(k(t)) is a second-order polynomial in time. Integration of T(k(t)) yields a cubic 
polynomial. Inserting this polynomial in (1), we end up with a third-order algebraic equation in 
the free-flight time, 

V 
Here the coefficients are denned as 

t J - 3 r 0 t } + S t / + T = 0 . (6) 

( k 0 - 0 5 _ 3 T o r _ 3 1 n ( r ) 

where T0 is the total scattering rate at the beginning of the free flight according to (5), r 0 = a k%+b. 
The free-flight time can be obtained analytically from (6), since for third-order algebraic equations 
a closed solution always exists. 

Furthermore we can show, that the conditions a > 0 and 6 > 0 are sufficient to make the 
discriminant in (6) positive. In other words, if both the slope a and the offset b of the linear total 
scattering rate (5) are positive, one real and two complex solutions always exist. Thus, the free 
flight time is uniquely given by Cardano's formula. For non-parabolic bands one can see in Fig. 1 
that advantageous linear scattering rates after (5) fulfill the condition for a positive discriminant. 
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Therefore, during the Monte Carlo simulation, checking the discriminant or the free-flight time for 
poitive sign can be omitted. In a situation where straight lines with a negative slope are used, 
three real solutions may occur and checks in order to find out the physical one are necessary. 

We have implemented the piecewise linear T technique using three different linear segments. The 
amount of self-scattering lies typically below 5%. 
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Figure 1: Use of self-scattering to set up a piecewise linear envelope function for the 
total scattering rate. The scattering rates are represented as functions of 7, which 
is defined as 7 = h2k2/2mo. 

3 MONTE CARLO-POISSON COUPLING 

Monte Carlo simulations of submicron MOSFETs employing the potential distribution of a con
ventional Drift-Diffusion simulation may lead to unrealistic results. Velocity overshoot phenomena 
can be clearly observed in such small devices. In particular we noted that at high gate biases a 
non-self-consistent treatment tends to overestimate the influence of these phenomena on the drain 
current. Therefore realistic results can only be expected by applying some sort of self-consistent 
technique. Previously published algorithms couple the Boltzmann transport equation, solved by 
the Monte Carlo-method, with either the linear [4] or the nonlinear [12] Poisson equation. In the 
latter method stability problems can be avoided and the convergence rate can be improved. In [8] 
we have described a one-dimensional implementation of a self-consistent algorithm, which is based 
on the so called Monte Carlo-Drift-Diffusion coupling technique. 

3.1 Monte Carlo-Drift-Diffusion Coupling 

Monte Carlo-Drift-Diffusion coupling is based upon an extended Drift-Diffusion like current re
lation, which is motivated by the first moment of the Boltzmann transport equation, 

1 dnUrjk / 1 a nUT,jk \ (8) 

The basic idea is that (8) exactly reproduces the Monte Carlo current density ji = -en <Vi>, 
provided that the coefficients /%• and Ur,ij are calculated in an appropriate way by the Monte 



46 

Carlo method. In the original work of Bandyopadhyay [1] the first three moments of the distribution 
function, n(r), < v* > and < hki-Vj > are calculated, and related to the required coupling coefficients 
by 

/ „ 1 d (n <hkj-Vk>)\ 

UT,%J = - <hki -Vj> . (10) 

However, difficulties arise when the non-local mobility (9) is evaluated by the MC-method. In 
particular a spatial derivative of Monte Carlo quantities must be calculated. Due to the noise 
associated with such quantities, this treatment will lead to inaccurate results. Using the equation 
for the first moment the mobility definition (9) can also be written as [1] 

m ( * ) . - < * 
(11) 

Our approach is to evaluate the average momentum loss rate at the left hand side of (11) directly by 
means of the Monte Carlo method, thus circumventing any problems arising from spatial derivatives 
[7]. The average momentum loss rate can be expressed in terms of the energy-dependent momentum 
relaxation time rm(e) as 

<ftk-rTO(€)-1> (12) 

Finally, it should be mentioned that approaching thermal equilibrium, the extended current rela
tion (8) simplifies to the conventional Drift-Diffusion current relation and the Monte Carlo-Drift-
Diffusion coupling coefficients (10) and (11) approach the equilibrium temperature voltage and the 
ohmic mobility, respectively. 
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Figure 2: Drain current as a function of the number of iterations for two different 
submicron MOSFETs. 

3.2 Self-Consistent Iteration Technique 

Monte Carlo-Poisson coupling can be done by including the continuity equation and the extended 
current relation in the iteration loop, 

div(e grad^) = e (n - p - No) , (13) 



47 

div j = 0 , 

j = e HUG n ( - grad$ + - grad(n DT,MC)) 

(14) 

(15) 

Each Monte Carlo step performs an update of the Monte Carlo-Drift-Diffasion coupling coefficients 
fiMQ and UT,MC-

In MINIMOS [3] a two-dimensional version of the Monte Carlo-Poisson coupling algorithm has 
been implemented. The Figures 2 (a)(b) and 3 (a)(b) show the evolution of the drain current 
with the number of iterations for different submicron MOSPETs. Figure 3 (c) and (d) additionally 
show the relative norms of the increments of carrier concentration and electrostatic potential as a 
function of the number of iterations. The norms first decrease rapidly but then are limited due the 
statistical noise inherent in the MC-method. In no one of the examples we have shown an iteration 
count larger than 5 was required to obtain the final drain current. The norms also do not exhibit 
any systematic change after 5 iterations. The number of costly Monte Carlo-Poisson iterations is 
therefore reduced drastically compared to other self-consistent coupling schemes reported in the 
literature [2] [4] [12]. 
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Figure 3: Drain current and relative norm of the n- and -^-increments as a function 
of the number of iterations for a 0.75/im-transistor at two different gate biases. 



5 CONCLUSION 

A self-scattering algorithm using a piecewise linear total scattering rate has been proposed. The ef
ficiency of the reduction of self-scattering events has been demonstrated. A Monte Carlo—Poisson 
coupling method, which is based on Monte Carlo-Drift-Difiusion coupling, has been implemented 
in a two-dimensional device simulator for the first time. The expectation of a high convergence 
rate has been validated. Application to submicron MOSPETs has demonstrated the applicability 
of the new algorithm as well as the necessity of self-consistent simulation for such small devices. 
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