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Abstract 

In tliis paper the two dimensional Monte Carlo device simulator BEBOP, developed for silicon de
vices, is described. The simulator solves self-consistently Boltzmann and Poisson equations for electron 
and holes starting from a drift-diffusioni! initial guess. Bebop can use different isotropic energy vs. wave 
vector dispersion relationships that try to reproduce the detailed features of the anisotropic silicon band 
structure. The program is applied to the study of nonequilibrium effects in short, channel Mosfet's. 

1 Introduction 

The progressive scaling down of modern semiconductor devices and circuits enhances the need of more 
accurate simulation tools able to describe a range of so called mesoscopir phenomena which arise when the 
size of the system is in the order of the characteristic length associated with certain scattering processes. A 
well known example is, for instance, I he velocity overshoot. An ideal method to describe such phenomena 
in the approximation of the quasi-classical carrier t ransport is the use of Monte Carlo method to solve the 
Boltzmann transport equation by .simulating a large number of carriers subject to external forces (electric 
fields) and given scattering mechanisms. 

In this framework the Monte Carlo device simulator BEBOP, developed for silicon devices, solves self-
consistently Boltzmann and Poisson equations for electron and holes in a two dimensional space domain, 
starting from an initial guess for electric field and carrier concentration given by a drift-diffusion simulator. 

BEBOP can use different isotropic energy vs. wave vector dispersion relationships (E{k)) [1, 2, 3], 
that try to reproduce with different levels of accuracy the detailed features of the anisotropic silicon band 
structure. The band structure is implemented via a set of cubic spline functions, hence analytical as well 
as non-analytical E(k) relationships can be accurately and efficiently implemented. 

The included scattering mechanisms are elect ron-phonon, impact-ionization, ionized impurities, and 
surface scattering: the implementation of electron-electron and electron-plasmon interactions are currently 
in progress. 

The program exploits ttel hoc techniques for the enhancement of rare events [-1, 5]. Such techniques 
are used to deal with scarcely populated regions in order to keep constant, the statistical error in the 
region of current flow in spite of large spacial variations of doping and carrier concentrations, and in order 
to enhance statistics related to very energetic carriers. Self consistency between Boltzmann and Poisson 
equations is achieved by means of an original and efficient coupling scheme presented in [5]. 

In the following section, the most recent improvements to the simulator in terms of physical models 
will be presented. Section three reports some results of applications to the study of strong non-equilibrium 
effects affecting charge transport in deep submicron MOSFETS. 
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2 Physical models 

The band model traditionally used to simulate elect ion transport, in Si includes only the lowest set of 
minima of the conduction band extended to higher energies through the nonparabolic approximation [6]. 
This approach is not adequate to describe the physical properties of electrons with energies in excess 
of w leV. A solution to this problem implies the use of the complete anisotropic semiconductor band 
structure (ASBS) [7, 8], but this is very CPU time consuming because of the anisotropic dispersion 
relationship E(k). A good alternative is provided by multiband isotropic models [1. 2 ,3, 9] which accurately 
describe transport phenomena in semiconductors, are significantly less CPU-time consuming, and can be 
easily implemented in alternative methods to solve Boltzmann transport equation [10, 11]. 

In particular the models of Refs.fl, 2] are given in terms of analytical electron and hole bands that fit 
the ASBS density of states (DOS) as a function of energy. The DOS contains integrated informations over 
the ASBS and, in particular, the electron-phonon scattering rate at a given energy is proportional to the 
DOS of the final state. Therefore, the fitting of the DOS ensures that the simplified models feature the 
same average electron-phonon scattoring rate of the more complex ASBS. The model of Ref.[l] features 
an electron band structure consisting of three isotropic parabolic upper bands (two of them are "'hole like") 
together with the usual lowest non-parabolic one in a finite spherical Brillouin zone. The bands are given 
by analytical expressions whose parameters have been determined by best fitting the DOS(E) up to ieV. 

Fig.l shows the DOS obtained from: this model, the ASBS, and a single, nonparabolic band model 
[6]. While the one-band model is inadequate above 1 .heV because of its DOS monotonicity, the good 
agreement between the two former curves indicates that the main effects of the Si band structure are well 
taken into account. Due to symmetry in the Brillouin zone (BZ). each band is made up of several valleys 
along the equivalent directions, and a multiplicity factor is used to consider all the available electron states. 

Following the same guidelines a multiband model for holes has been developed. It includes four isotropic 
bands in a finite spherical BZ. Again the four bands provide a best fit to the DOS(E) obtained from an 
ASBS. The analytical dependence E{k) was obtained by using the non parabolic, approximation [6] where 
the non parabolicity parameter, the effective mass and the geometrical multiplicity factor are not constant 
along the two bands, in order to account for the warping of the real band structure. Fig.2 shows the 
considered band structures for electron and holes. 

The fitting of the DOS, however, does not ensure that, carrier velocity is properly treated. Notice 
that the carrier velocity in the ASBS (uy(k) — ^pEik)) is a function of the wave vector k. while for 
any isotropic band model it depends on the magnitude of A' only, thus on the energy E. Therefore a 
comparison between the carrier velocity of ASBS and that of isotropic models can be done only through 
a suitable average group velocity uu(E). In this framework, we have developed a. more complex isotropic 
band model for electrons and holes in silicon, conceived to best fit, the behavior in energy of both DOS and 
u,j calculated from the ASBS. In this case the E(k) relationship is given in terms of numerical isotropic 
bands, one for each of the main symmetry points in the conduction and the valence band. 

From the E(k) data computed using empirical pseudo-potentials [12], DOS(E) and ug{E) were ob
tained following [13]; uu{E) has been defined weighting all the ug(k) by the DOS of the infinitesimal 
volume around k, where the /.• are all the momentum vectors lying on the surface at energy E. Fig.3 
shows the comparison between the electron va{E), computed from the ASBS as shown above, with that 
provided by uniform MC simulations using directly the ASBS [8]. The excellent agreement between these 
two quantities demonstrate that, at least for the homogeneous silicon case, the average magnitude of uq(E) 
is marginally affected by anisotropic field-driven effects. 

The isotropic band model has been obtained using the following procedure. The irreducible wedge of 
the first Brillouin zone was divided into three parts (*P,. / = 1,3). each of them centered on a selected 
kci and made up of all the nearest /,• vectors. The kci vectors were chosen at the local energy minima 
(maxima) of the conduction (valence) band: 0.85X. F, and L for electrons: X, V. and L for holes. This 
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allows to determine a single isotropic band for each symmetry point, with the same effective mass at 
kci and multiplicity of the corresponding symmetry point in the ASDS. For each region Vi in the k 
space, the corresponding DOSi{E) and «,,(£) were calculated integrating over all the k states in the Vi 
region. Next we computed a .set of Ei(h) featuring isotropic DOS}30 and %"° in good agreement with the 
corresponding DOSi and «,,-, respectively. Since the functions Ei(k) are isotropic, DOS™0 and «5"° can 
be easily obtained analytically [3]. This allows to write a set of two differential equations in the unknown 
function E{(k), that cannol be solved exactly. An optimum solution can be found which minimizes the 
weighted sum of the relative errors made on the DOS and w,, respectively. 

The resulting isotropic band structure for electron and holes is reported in Fig.*l. The numerical im
plementation of the multiband model in the MC device simulator exploits a set of cubic spline functions 
to represent the E(k) relationship. Since this approach avoids the use of computational intensive mathe
matical functions and does not require different calculations for analytical and numerical bands, the CPU 
requirements do not increase compared to the case of a single band [5]. The multiband models are consis
tently used in the evaluation of the eloctron-phonon scattering probabilities and the following mechanisms 
are considered : intraband acoustic scattering in the elastic approximation, oplical-phonon scattering to 
equivalent bands, and interband optieal-phonon scattering. The formulae to compute the electron-phonon 
scattering rates P(k.k') has been extended from the well known analytic band cases to the case where 
E(k) is given by means of numerical tables, as in our models. This extension was made integrating the 
P(k,k') expressions [6] over the k state space generated by our E(k) functions. The other scattering 
mechanisms included in the calculations are: a) impact ionization implemented using non-isotropic model 
of Itef.[14] for the electron multiband model of Ref.[l] or the Keldysh formulation for the other multiband 
models; b) ionized impurity scattering (Brooks-Herring model); c) surface scattering as a combination of 
specular and diffusive scattering [15]. For each model plionoii coupling constants and temperatures have 
been determined, when possible, by best fitting available experimental data on transport properties. 

3 Results 

A set of optimized transport parameters has been obtained for the electron band model of [1] by comparing 
simulation results with an extended set. of experimental data including n-MOSFET substrate current and 
electron injection probabilities from Si into S1O2 [16]. The set of transport parameters includes: acoustic 
phonon (£1) and optical phonon (Dth') coupling constants for both intra- and inter-band transitions and 
the pre-factor (P//) for II probability. As an example, the accuracy of the model in the calculation of 
the electron energy tail is checked by a comparison of simulations with the experimental data reported 
in [17], where injection probabilities of photo-generated electrons accelerated in the depletion layer of 
MOS transistors have been measured. Fig.5 reports a comparison between the measured and calculated 
injection probabilities: the agreement is excellent over four orders of magnitude. The MC simulator with 
the electron multiband model of Ref.[l] has been used to study the inpact of voltage scaling on device 
performance in submicrometer MOSFET's [18]. To this purpose, a reference Ifim process ( £ e / / = 0.75/tm) 
has been scaled to Lejj = 0.25/* m; using the same process, devices with Lejj down to 0.075/tm have 
been simulated. We investigated two scaling strategies for the applied voltages: the traditional approach 
(hereafter called Fav scaling) aimed to maintain the same value of the average lateral electric field in the 
channel (Fav = Voo/^eff) »n<I a different one (Ej,"!,_r scaling) designed to keep the same value of the 
maximum lateral electric field at the Si — SiO-j> interface. (l']1,"^) (see Table). In order to estimate intrinsic 
device performance, a number of parameters have been computed using both the Monte Carlo and the 
traditional drift-diffusion (DD) model, to compare the results of the two approaches. Fig.6 reports the 
device transit times (i.e. the channel length divided by the electron average velocity ¥ ), and the cutoff 
frequency, fr = (jmf2KCo (where gn>. and Co are the device transconcluctance and the gate capacitance 
respectively), for different length devices, and for F}"JU. and F„„ scalings, as calculated using MC and DD 
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models. Apart from the difference in the absolute values of fo (18% in the shortest device and higher 
voltage case) given by the two models, at 0.15 fim the MC simulation predicts an 11% increase in / r if 
the Fl^lx scaling is used instead of the Fav one. Under the same conditions the drift-diffusion model gives 
only a 6% increase in //•• This pessimistic prediction is essentially due to the effects of velocity saturation 
which do not really occur at very short gate lengths. Device simulation can also provide the actual average 
velocity distributions within the device. Results obtained from both MC' and DD are shown in Fig. 7, for 
the case Lejf = 0.15/nn. In the case of Fnv scaling the MC velocity is much higher than DD throughout 
a large portion of the channel, and this produce a significant enhancement in //•. However, because the 
difference in DD and MC velocities is small at the source end of the channel, the MC and DD #,n's are 
still reasonably close. In the FJ£*T scaling case, instead, the MC velocities are substantially above those 
of the DD calculations for the entire channel, and consequently a significant advantage can be taken of 
velocity overshoot, not only on fr, but, also on current and transconductance. Finally Fig.7 shows that 
the MC model predicts a much higher increase of 7; than DD if the Fj^r scaling is used instead of the Fav 

one: this point is confirmed by the transit time and f-p data of Fig.6. 
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TABLE 

DEVICE PARAMETERS AND BIAS CONFIGURATIONS 
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Fig.l: DOS calculated from the model of Ref.[l] 
(dashed), from the ASUS (solid), and from sin
gle non-parabolic band model (dotted). 
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Fig.2: analytical E(k) for electrons and holes 
from Hefs.[l, 2]. 

Fig.3: electron ug(E) from the ASUS (dashed 
line), and from homogeneous AIC simulations 
using the ASUS [8] (solid lines). 
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Fig.4: Numerical E(k) for electrons and holes 
from Ref.[3]. 

Fig.5: Injection probability vs. VSB and Fox = 
2MV/cm for the three different devices labeled 
5A, 15-2-9 and 15-2-1 in [17]; lines: experiments; 
points: simulations. 
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Fig.6: fr and Iransit time vs. / , , / / for two dif
ferent scalings and the two models. DD. Ftn. 
scaling (A) ; DD. F}for scaling (A) ; MC. /•',„. 
scaling ( • ) ; MC, F^r scaling (D). 

Fig.7: average electron velocity for the device 
with Lcfj = 0.15////?; Fav scaling: solid lines; 
I'lnL scaling: dashed lines. MC simulations: 
thick lines; DD simulations: thin lines. 




