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Abstract 

Classical, semiclassical and quantum mechanical modelling techniques suitable for simulating 
contemporary microwave and millimeter-wave devices are discussed. Examples of simulation 
results obtained using the different types of model are given for several microwave devices. 

Introduction 

The difficulty in representing the operation of microwave devices above 20 GHz, particularly 
in the non-linear regime, coupled with the desire to optimize performance, has led to 
increased interest in using physical models to design and improve devices. The type of 
physical device model used to represent a particular device depends on the nature of the 
dominant carrier transport mechanisms and in more complex cases the feasibility of solving 
the model. Many of the commercially available simulation packages utilize bipolar drift-
diffusion models, suitable for devices where hot electron effects are less significant. In small-
scale devices where the response time of the device approaches the energy (and 
momentum) relaxation times it is necessary to consider a more detailed treatment than the 
basic drift-diffusion schemes. The majority of microwave devices intended for operation 
above 10 GHz require at least an energy-transport model. In very small-scale devices and 
in many heterostructure devices, a self-consistent quantum-mechanical solution at the 
interfaces may be required. 

Drift-Diffusion Models 

The basic drift-diffusion equations, obtained from the time-independent Boltzmann transport 
equation, consist of the current continuity equations, 

— = -V.J - qG for electrons (1) 
dt a " 

&- = - -VJn - qG for holes (2) 
dt q p 

and the current density equations, 
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Jn = qn\inE + qDnV.n for electrons (3) 

Jp = qp\ipE - qDpVp for holes (4) 

where n and p are the electron and hole densities, /xn and n are the electron and hole 
mobilities and q is the magnitude of the charge on the electron, G is the generation-
recombination rate, E is the electric field, Dn and Dp are the electron and hole diffusion 
coefficients. The diffusion coefficients are usually obtained from the well known Einstein 
relationships, although it has been demonstrated that the anisotropic nature of compound 
semiconductor materials leads to diffusion coefficients which depart significantly from the 
Einstein relations [1]. The drift-diffusion approximation assumes that the average electron 
temperature throughout the device is fixed at the lattice temperature {Tm corresponding to 
the equilibrium energy). 

The Poisson equation is solved to obtain the electric field and potential distribution. In the 
case of homogeneous structures, the Poisson equation simplifies to, 

V.E = - ^ f = -3-{N; - n + P -AT;) (S) 
€ 0 6 r 

where f is the electrostatic potential, ND
+ and NA~ are the ionized donor and acceptor 

doping densities, e0 is the permittivity of free space and e r is the relative permittivity of the 
semiconductor. In many microwave devices trapping effects are important, modifying both 
the DC and RF characteristics. In these circumstances it is necessary to include terms in the 
Poisson and continuity equations which account for trap filling and dynamic charge 
associated with these trapping centres. 

It should be noted that in the case of heterostructure devices, where the material 
parameters are a function of position and composition (mole fraction x), the Poisson and 
current density equations are written as, 

VJB = - tf*t = -2-(NZ -n+p - AT;) - J_Ve0€r.Vf («) 
6 0 V 60€r 

( kT kT \ 
Jn = unn qE-V% + ^Vn - ^ W c 

J = u 
I kT kT ^ 
qE -Vx - VE + ^-Vp - # W V P - P I - - 8 p ' N 

V 

(7) 

(8) 

where % is the electron affinity, Nc and Ny are the conduction and valance band density of 
states respectively. The electron affinity, density of states and energy band gap E are all 
functions of mole fraction x (see for example [2]). 
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Unipolar devices, such as MESFETs, are often modelled using a reduced set of the 
transport equations, considering only the electron continuity and current density equations 
(eg [3,4]). This is often adequate for normal operating conditions, but cannot be used to 
consider breakdown or devices with lightly doped p-type buffer layers below the active layer. 
Bipolar devices naturally require a full solution of both electron and hole transport 
equations, together with a suitable treatment of generation and recombination. Other 
microwave devices which operate with high levels of impact ionization, such as IMPATT 
devices, also require detailed generation-recombination models. 

Non-Stationary Transport 

The high electric fields present in the small structures used in microwave devices causes 
substantial electron heating, and the carriers attain very high energies relative to the 
equilibrium levels. In these circumstances the carriers experience non-stationary transport 
conditions and their velocity may transiently exceed the equilibrium value. There are two 
general approaches to modelling small-scale devices. These are Monte Carlo simulation 
techniques and simulations based on hydrodynamic equations derived from the Boltzmann 
transport equation. A useful assessment of the relative merits of the various hydrodynamic 
approximations is given in [5]. 

The full set of hydrodynamic equations which describe non-stationary transport for electrons 
are, 

particle (current) conservation, 

(9) dn 
dt 

+ V(nv) = 0 

momentum conservation, 

dv qE 
dt m*(w) 3m*(w)n 

V(nw) - vVv + —V(m*(w)v2) - — — 
3n xjw) 

(10) 

energy conservation 

— = -qvE - vVw - —%nv 
dt 3n 

m*(w) 2 w - wn 

T w ( W > 

(11) 

where the average electron energy w is given by, 

1 ^ 2 
—TO*(w)V'4 

2 2 

w = — w*(w)v2 + — kTe (12) 

and m*(w), TW(W) and rm(w) are the average effective mass and the effective energy and 
momentum relaxation times, Te is the electron temperature. The parameters m*(w), TW(W), 

T,„(W), and the equilibrium velocity vM are all determined from their relationship with the 
steady-state electric field EK obtained from Monte Carlo simulations [2,5]. 
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Figure 1. Heterojunction bipolar transistor simulation results, showing current flow in a 
graded base structure, using a drift-diffusion model with finite-difference discretization. 

The characteristics of most semiconductor devices are strongly temperature dependent, yet 
the majority of simulations assume that the device is at a constant lattice temperature, 
usually room temperature (300K). A rigorous thermal model requires the solution of the 
heat flow equation. An example of results obtained for a sub-micron gate length GaAs 
MESFET simulation incorporating a detailed non-stationary model and thermal modelling 
is shown in Figure 1. A finite-element discretization was used in this simulation 

A further simplification of the full set of hydrodynamic equations leads to the energy-
transport model. Here momentum and energy conservation equations reduce to the 
following forms, 

, . 2^L( -qE - Ivw - 22*,) 
m*(w)( 3 3« 

(13) 

dw 2 w ~ wa — = -qvE - vVw - —V(nwv) -
* 3« xjw) 

(14) 

Quantum Mechanical Models 

Many contemporary microwave devices, such as HEMTs and RTDs, utilise structures which 
exhibit quantization of energy levels. In these devices it is sometimes necessary to obtain a 
quantum mechanical solution for the electron density and potential distribution, requiring 
a self-consistent solution of the Poisson and Schrodinger equations [6]. This is usually 
attempted in one-dimension, solving, 

ax\r dx > « n + p * ) 
0 Poisson's Equation (15) 

h2 8 f i a*„) 
%*2dx Km* dx , 

+ (ytat - * • > * . = o Schrodinger's Equation 
(16) 
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Figure 2. Simulation results for a 0.5 micron gate length GaAs MESFET using a full 
non-stationary model and including a thermal model based on the heat flow equation, 
(a) potential (b) electron density (c) electron average energy (d) electron temperature 

(e) lattice temperature contours. 

and the two-dimensional electron gas density associated with quantized energy levels shown 
in Figure 3 is obtained from, 

nu = 
4nm*kT 

Ei*.Pta 1 + exp 
EF~En 

kT 
n 

(17) 

where ijrn is the wave function corresponding to sub-band n, En is the energy at the bottom 
of sub-band n, and Vm is the sum of the electrostatic potential and exchange correlation 
potential. Figure 3 shows the conduction band profile, quantized energy levels and electron 
density for a multi-channel HEMT profile. In many small-scale structures a treatment based 
on Fermi-Dirac statistics has been found to provide an adequate model. It is found that for 
simple structures quantum mechanical simulation tends to 'smooth' the conduction band 
profile compared with results obtained from models based on Fermi-Dirac statistics. 
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Figure 3. Conduction band profile showing quantized energy-levels and electron density 
for a multi-channel HEMT profile obtained from a quantum mechanical model. 

Conclusions 

This paper provides a brief summary of physical models available for modelling 
contemporary microwave and millimeter wave structures. 
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