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Abstract 

The agreement which can be achieved between the hydrodynamic and the Monte Carlo model 
on the device level based on the consistency of both models under homogeneous conditions 
is briefly reviewed. The influence of heat flux and thermal diffusion on steady state velocity 
overshoot is examined within one-dimensional test structures. 

1 Introduction 

About a decade ago the Monte Carlo model (MCM) (solving Boltzmann's transport equation 
(BTE)) and the hydrodynamic model (HDM) (solving moment equations which can be derived 
from BTE under appropriate assumptions) started to be of increasing interest because hot carrier 
effects became more and more important for device design. At that time these models often were 
developed independently and sometimes they even seemed to play a competitive role. However 
in more recent years it turned out that the most beneficial role of the HDM for device design 
could be that of a bridge making the superior modeling accuracy of the MCM available for device 
design without significantly changing the user interface for the designers which are familiar with 
the handling and the computational speed of the drift diffusion model. For this bridging function 
consistency between the MCM and the HDM is of key interest. In the beginning is was unclear 
whether the HDM would be capable of replaying the MCM results with sufficient accuracy and even 
quite discouraging results were published [1] in this respect. Meanwhile at least for the steady state 
unipolar electron transport in Si MOSFETs it has been proven [2], [3] that a degree of consistency is 
achievable between both models which should be sufficient for most design applications today and in 
the near future. Many people have contributed to this development but instead of giving a broad 
overview over these contributions, in this paper we try to exemplify the achievable consistency 
within the framework of the generalized hydrodynamic model (GHDM) [2]. In the next chapter the 
results which have been achieved by adapting the GHDM to the MCM entirely under homogeneous 
conditions are briefly reviewed. In a subsequent section the modeling of steady state velocity 
overshoot with the GHDM is discussed. 

2 GHDM adaptation to MC under homogeneous conditions 

In [2] the GHDM is derived from BTE without assuming a parabolic band structure. Therefore 
the GHDM is better suited to incorporate nonparabolic band structure effects than previous HD 
models. On the other hand besides other assumptions (see [2]) it is still based on the relaxation 
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The steady state version of the GHDM for unipolar electron transport is 

e A t = -q (p-n + ND- NA) 
V J = qR 

J = —— {rfgnV* - nkT'Vn - ftd r{nVkT*\ 
m* 

v • s = - J • vi - -k {iwj-'cr - T„) + r*«} 

All symbols have their usual meaning and are defined in [2]. Moreover as in [2] f^j — f^ — 1 is 
assumed throughout this section. Within the framework of the above GHDM impact ionization is 
described by the nonlocal electric field line based lucky electron model reported in [5]. 

Within the GHDM relaxation times T*,Ti,r£,T* are assumed to be functions of local electron 
temperature T* and doping. Therefore as demonstrated in [2] and [3] relaxation times as well as 
the parameters for the lucky electron model (besides threshold energy for which an effective value 
of 1.75eF is adopted in agreement with [4]) can be extracted from a MCM under homogeneous 
material and field conditions. This is exemplified in figures 1 and 2 showing r* as a function of 
doping and electron temperature as well as the impact ionization coefficient a as a function of 
inverse electric field as they have been extracted from MC under homogeneous conditions. The 
model parameters of the relaxation time and impact ionization models within the GHDM are 
extracted from such curves such that parameter extraction on the device level is avoided. 

The extraction procedure itself does not depend on the details of the MCM like scattering and 
band structure models and can be performed for different MCMs with comparable success with 
respect to the agreement of both models on the device level. However for the agreement of the 
GHDM with experimental data the quality of the underlying MCM is of course crucial. The MC 
multi-particle model used to generate the results shown in this paper is based on the high energy 
band structure model reported in [6] and the impact ionization model given in [7]. The impact 
ionization model has been derived consistent to the high energy band structure model. 
The agreement of GHDM spatial distributions with the MC reference due to the extraction pro­
cedure outlined above is exemplified in figures 3 and 4. In these figures spatial distributions of 
electron density and impact ionization rate from both models are compared within the drain region 
of a typical n-channel LDD-MOSFET with Lefj = 0.7fim. In [3] it has been demonstrated that 
a comparable agreement of spatial distributions as well as drain and substrate currents can be 
achieved at least down to effective channel lengths of 0.3/xm and down to a drain bias of 3V under 
peak substrate current condition. 

3 Modeling of steady state velocity overshoot 

Steady state velocity overshoot in silicon is very often monitored based on ID N+ — N — N+ test 
structures [9], [10], [8]. The most common example (labeled example 1 in this paper) consists of 
three homogeneously doped regions with N+ = 5 • 1017em -3 and N = 2 • 101 5cm - 3), respectively. 
The lowly doped region is OAfim long and the length of the highly doped regions is Q.l/zm. The 
applied bias is usually 1.5V. It is well known for this example that the spatial velocity distributions 
resulting from many HD models show (spurious) velocity overshoot peaks within the N-region close 
to the junction with the i\f+-region having the higher potential. Such peaks are never found in 

time approximation, 
given below: 
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respective MC results. Moreover it is known that these peaks can be reduced and the agreement 
with MC improved by reducing the components of electron current density J and energy flux 
density S being related to the gradient of electron temperature namely the thermal diffusion 
current and the heat flux density, respectively. This has been shown for a scaled down [8] as well 
as for a vanishing [10] heat flux component. In [9] the same was shown for a vanishing thermal 
diffusion component. 

Moreover in [11] it could be shown that already in the region of linear transport the assumption 
fhj = ftd — 1 which is made within the GHDM mainly due to the relaxation time approximation 
is valid only for high doping levels, whereas for low doping ftd and fcj are substantially lower than 
one. 

In order to get more information concerning the appropriate size of ftd, fhf, the GHDM has been 
modified to allow for values of ftd, fhj different from 1. With this modified GHDM example 1 was 
simulated with different values for ftd and fhf, respectively. Moreover in order to get a broader test 
base an additional example (example 2) was simulated. Example 2 has been derived from example 
1 by increasing the doping by a factor of 100 and decreasing length by a factor of 4. The results 
of these simulations in comparison with the appropriate MC reference simulations are summarized 
in figures 5 to 10. Figure 5,6 and 9,10 show that without modifications (ftd = //,/ = 1) the 
spurious velocity overshoot is clearly observable within the results of the GHDM. Furthermore it 
can be concluded from figures 6 and 10 that even a vanishing thermal diffusion component without 
changing the heat flux density is not sufficient to completely remove the spurious velocity overshoot. 
This can be observed in [9] as well. In addition when changing ftd from 1 to 0 the terminal current 
deviation between the MCM and the GHDM is increased from 7% to 14% for example 1 and 
from 4% to 27% for example 2. Hence terminal current accuracy is getting worse though spurious 
velocity overshoot is decreased. Finally the agreement of the temperature distribution is getting 
worse as well with decreasing ftd since figure 8 shows that the location of the temperature maximum 
is shifted further away from the respective MC position. This happens not only for example 2 but 
can be observed for example 1 as well. 

Decreasing heat flux while leaving thermal diffusion unchanged yields more encouraging results. In 
figures 5 and 9 it is demonstrated that the spurious velocity overshoot vanishes completely when 
heat flux is scaled down by a factor of 4 (example 1) or 8 (example 2), respectively. This is in good 
agreement with [8]. At the same time current accuracy improves from 7% to 6% for example 1 and 
from 4% to 2% for example 2. In addition the position of the temperature maximum is improved 
as well when heat flux is decreased (figure 7). Again this can be observed for example 1 as well. 

4 Conclusion 

It has been demonstrated that adapting the GHDM to the MCM under homogeneous conditions 
yields a good agreement between both models for MOSFETs down to effective channel lengths of 
O.Zfim. Since this agreement is not significantly influenced if thermal diffusion or heat flux are 
decreased as discussed in section 3, both flux components can be modified in order to improve 
the modeling of steady state velocity overshoot while keeping previous results [2], [3] still valid in 
principle. In the framework of the GHDM it turns out at least for the case of N+ — N — N+ test 
structures that for a more accurate modeling of velocity overshoot only the heat flux term within 
the GHDM needs to be corrected. Hence only that term in the GHDM, which originates from a 
forth order moment of BTE and is therefore considered to be the least accurate anyway, has to be 
modified. 
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Figure 1: Momentum relaxation time rt* ex­
tracted from the MCM under homogeneous 
conditions. 

Figure 2: Impact ionisation coefficient a ex­
tracted from the MCM under homogeneous 
conditions. 
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Figure 7: Comparison of spatial electron tem­
perature distributions from the MCM and the 
modified GHDM for example 2 and different 
fhj (ftd = 1). 
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Figure 8: Comparison of spatial electron tem­
perature distributions from the MCM and the 
modified GHDM for example 2 and different 
ftd (fhf = 1). 
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Figure 9: Comparison of spatial velocity dis­
tributions from the MCM and the modified 
GHDM for example 2 and different //,/ (ftd = 
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Figure 10: Comparison of spatial velocity dis­
tributions from the MCM and the modified 
GHDM for example 2 and different /ttj (f^j = 

1). 
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Figure 3: Comparison of spatial electron den­
sity distributions from the GHDM and the 
MCM within the drain region of a typical n-
channel LDD-MOSFET (Leff = 0.7/xm, VD = 
6V,VG = 1.5V). 
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Figure 4: Comparison of spatial impact ion­
ization rate distributions from the GHDM 
and the MCM within the drain region of 
a typical n-channel LDD-MOSFET ( i e / / = 
0.7fim,VD = 6V,VG = 1.5V). 
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Figure 5: Comparison of spatial velocity dis­
tributions from the MCM and the modified 
GHDM for example 1 and different fhf (ftd = 
1). 
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Figure 6: Comparison of spatial velocity dis­
tributions from the MCM and the modified 
GHDM for example 1 and different ftd (fhf = 




