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Abstract: Hole trapping in oxide defects in the gate insulator
of MOSFET transistors has been linked to a wide range of
phenomena like random telegraph noise, 1/f noise, bias temper-
ature instability (BTI), stress-induced leakage current and hot
carrier degradation [1–5]. Charge capture (τc) and emission (τe)
times of a defect are theoretically described by nonradiative-
multiphonon (NMP)-theory, where the potential energy surface
(PES) along the reaction coordinate is usually approximated
by a parabola [2, 6, 7]. In the classical high-temperature limit,
transitions between the different charge states occur at the
intersection of those parabolas, which also defines the classical
reaction barrier. This harmonic approximation has been in use
ever since the introduction of NMP-theory [8–10]. However,the
quality of this approximation is rarely investigated [7]. In this
work, we compare different approximations of the PES in order
to calculate τc and τe and compare them to the results obtained by
Density Functional Theory (DFT) calculations. For this we use
the DFT-PES as well as two approximations of the PES of several
defects to calculate τc and τe in a pMOS device. Our study covers
different possible defect candidates, which have been previously
identified as sources of degradation in silicon dioxide [11–13]:
The oxygen vacancy (OV, see Fig. 1b) in α-quartz, the hydrogen
bridge (HB, see Fig. 1c) in both α-quartz and in amorphous
silicon dioxide (a-SiO2) and the hydroxyl E’ center (H-E’, see
Fig. 1d) in a-SiO2. Since the amorphous structures differ from
each other, also the PES varies. Therefore we have investigated
11 HB defects and 12 H-E’ defects from [14] to provide statistical
data. We show that the parabolic fit to the PES underestimates
τc and τe by several orders of magnitude. Therefore we propose
a different approximation that yields to more accurate τc and
τe and captures several desired features, also in cases where the
parabolic approximation fails.
Simulation Framework: For our DFT calculations we used
the CP2K framework [15] with the non-local PBE0 TC LRC
hybrid functional [16]. Large a-SiO2 structures containing 243
atoms (crystalline) or 216 atoms (amorphous) were created using
ReaxFF [17]. Using DFT, the defects were relaxed in their neutral
and positive state. This results in slightly different atomic con-
figurations for each charge state. The normalized reaction coor-
dinate (NRC) is defined as the normalized atomic displacement-
vector between them. For constructing the PES we used this
displacement vector to interpolate configurations between the
two states (range 0.0 to 1.0), or extrapolate configurations in
the range -1.0 to 0.0 (or 1.0 to 2.0 respectively). The PES was
then calculated by computing the energies for 30 configurations
along the NRC in the range -1.0 to 2.0, and spline interpolation
in between (see Fig. 2).
These PESs calculated by DFT (EDFT) were taken as a reference
to evaluate the quality of possible approximations. When a gate
bias is applied, the PESs shift relative to each other along the
y axis, changing the reaction barrier and therebyτc and τe. In
the following we will focus on these quantities, investigating
whether the aforementioned approximations accurately reproduce
τc and τe and their dependences. For this purpose the reaction
time constants vs. gate-voltage curves (for VG = −2.5V to
2.5V) were calculated for each defect in a pMOS device with
oxide thickness of 2.5 nm, for different temperatures (T= 50 °C,
100 °C, 150 °C and 200 °C). For these calcualtions we use a semi-
classical approach based on [9] and [18]. An example of these
curves for different defects and approximations is depicted in
Fig. 3.
Results and Discussion: An analytic approximation should not
only be able to fit the τ(VG) curves (Fig. 3 and Fig. 4) but also
the dependence on the gate bias (Fig. 5) and the temperature-
dependence (Fig. 6). The functions for the parabolic approxima-
tion (EPar) are usually calculated by fitting the parameter α in

EPar(q) = α(q − q0)
2 (1)

to two points for each parabola, with q0 being the position of
the minimum [2, 19] (see Fig. 2). However, as demonstrated in
Fig. 2, EPar tends to underestimate the crossing point. Since τc
and τe are extremely sensitive to the height of this barrier [8], a
good match in this region is essential for a good approximation.
Very promising results were obtained using a V-approximation:

EVap(q) = γ(
√

1 + β(q − q0)2 − 1) (2)
being parabolic near the minimum at q0 but linear for larger
values of |q − q0|. It should be pointed out that although we
refer to this function as V-approximation this does not indicate
that EVap has a jump discontinuity at its minimum, but rather
that its shape resembles more a V than a parabola. The constant
γ defines the opening angle, for simplicity reasons its value was
set to 1.0 eV in this work.
Calculating τc and τe for the OV (see Fig. 3 left), EPar actually
is a very good approximation, in this case even slightly better
than EVap. However, for all the hydrogen-related defects, this is
not the case and EPar fails to reproduce the τc and τe values.
Although EPar only tends to slightly underestimate the reaction
barrier (as shown in Fig. 2 left), τc and τe are lower by several
orders of magnitude (Fig. 3 right). Using EVap the agreement
improves considerably.
This observation also holds for a statistical comparison for
several defects in a-SiO2, as can be seen in Fig. 4. Correlation
improves significantly when using EVap instead of EPar. This is
valid for all five voltages presented in these plots.
The slope of the τc(VG) curve determines the dependence of τc
on the gate bias [2]. We determined the τc

′(VG) curves in the
range VG = 1.0V to 2.5V by a least square fit to each data
set. The slope for the different approximations is again plotted
in correlation-plots (Fig. 5). Like in Fig. 4 EPar gives a poor
match to the behavior calculated using EDFT, whereas EVap fits
well. This is observed for all four temperatures investigated.
Finally, a good approximation should also be able to reproduce
the temperature dependence of τc (the activation energy). In
Fig. 6 a least square linear fit for τc(T) at VG = 1.0V is provided
for the τc(T) calculated using EDFT and both approximations
discussed. Also here EVap reproduces the results in α-quartz and
for the H-E’ better than EPar. Interestingly here the fit for the HB
in a-SiO2 seams slightly worse than the parabolic approximation.
Conclusions: We have calculated τc and τe for several defects
and several approximations of the PES along the reaction coor-
dinate. By comparing them to results obtained using DFT, we
show that the widely used parabolic approximation is poor for
most of the investigated defects in this work, since it leads to
an underestimation of τc and τe by several orders of magnitude.
Furthermore it also fails to represent the slope τc

′(VG) or the
activation energy of the DFT-results. We propose a different
approximation which captures the curves in the area of interest
(near the crossing point) much more accurately. This leads to a
much better approximation of τc and τe and their characteristics
for most of the investigated defects.
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Fig. 1: Schematics of the different defects (b,c,d)
used for the calculations compared to the defect-free
structure (a). In the oxygen vacancy (b) an O-atom
is missing, while for the hydrogen bridge (c) it is
replaced by a H-atom. In the case of the hydroxyl E’
center (d) a H-atom is bound to the O-atom having
broken up one of the Si-O bonds. The latter defect
needs bond distances larger than 1.65A [14] which
are not present in α-quartz and therefore does only
exist in amorphous structures.

Fig. 2: Cut through the potential energy surface along the norm. reaction coordinate for the neutral to the
positive state of the hydrogen bridge (see Fig. 1 c) in α-quartz and the two different approximation variants
discussed in this paper. In the parabolic approximation (left), the neutral PES (grey) is constructed using (1)
fitted to the two grey points. These points are the value of the neutral PES at the neutral configuration and at
the positive configuration when charged neutrally. The positive PES is constructed in a similar way.
The V-approximation (2)(right) represents the EDFT near the intersection point much better. Taking the neutral
PES (light blue) as an example, one can see that here the points at 0.0 and 0.5 on the norm. reaction coordinate
are used for the approximation. When a voltage is applied, the PESs shift relative to each other along the y
axis, changing the intersection point which defines the reaction barrier in the classical high-temperature limit.

Fig. 3: Depending on the applied bias conditions, the PESs in Fig. 2 move up or down changing the energy-barrier that has to be overcome for charge-capture
or emission. The above plots show the reaction time-constants τc and τe at T=100°C. It can be seen that they are very sensitive to a change of the barrier height.
Although the parabolic approximation is good for the oxygen vacancy (left) (even slightly better than the V-approximation), it fails by several orders of magnitude
for all the hydrogen-related defects (right). For the defects in a-SiO2 , the behavior of τc(VG) (τe(VG)) is of course slightly different for each investigated structure.
The two respective graphs are examplary for one of the investigated structures. One can see a considerable improvement when the V-approximation (2) is used. To
quantify the improvement, a l2 norm for log(τc(DFT))-log(τc(appr.)) (similar for τe) is shown as score function.

Fig. 4: Double logarithmic correlation-plots for the absolute values of τc at
T=100°C for the hydrogen bridge in a-SiO2 (top) and hydroxyl E’ center (bottom).
Correlation of τc calculated using EDFT and τc calculated using EPar (left)
or EVap (right) are shown. When τc for both approximations is the same, the
respective point would lie along the diagonal, therefore the off-diagonality can
be used as a criterion determining the quality of the fit. It is clearly visible that
τc tends to be underestimated in the parabolic approximation. To quantify the
improvement a l2 norm for the distance to the diagonal is shown as a score
function.

Fig. 5: Correlation-plots for the slope of log10(τc(VG)). Like in Fig. 4, the
hydrogen bridge in a-SiO2 is depicted on top and the hydroxyl E’ center at the
bottom. Correlation of τc

′ calculated using EDFT and τc
′ calculated using EPar

(left) or EVap (right) are shown. It is clearly visible that τc
′(VG) is overestimated

in the parabolic approximation. Also, to quantify the improvement, a l2 norm for
the distance to the diagonal is shown as a score function.

Fig. 6: Arrhenius plots showing the temperature dependence of τc(T) at VG = 1.0V in the four investigated defects. In the amorphous structures, the values
are distributed over a wide range. The lines are a least square fit to the data points, also providing the slope to calculate the activation energy Ea. To quantify the
improvement, a l2 norm for the differences to the results using EDFT (black) is depicted as score function. For the case of the HB in α-quartz and for the H-E’,
EVap (light blue) is a better approximation than EPar (grey). Interestingly, for the HB in a-SiO2 the score for EVap is slightly worse.
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