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ABSTRACT 
A simple, unified view of electron and phonon 

transport is presented. Similarities and differences 
are identified, and new insights that come from 
addressing phonon transport from an electron 
transport perspective will be discussed. 

INTRODUCTION 
Computational electronics has focused on 

simulating electron transport, and over the years as 
device dimensions have shrunk, a suite of 
powerful tools has been developed. Devices 
dissipate power and generate heat, but the 
treatment of heat transport has largely been the 
work of other communities, but the evolution of 
technology with device structures such as 
extremely Thin Silicon On Insulator (ETSOI) 
MOSFETs and FinFETs has increased the 
importance of self-heating in nanodevices. The 
average mean-free-path of phonons in bulk silicon 
is over 100 nm, meaning that ballistic phonon 
transport may be even more important than 
ballistic electron transport. Just as we have learned 
how to think about electrochemical potentials at 
the nanoscale, we must now learn how to think 
about temperature at the nanoscale. The problems 
we face in modern electronic devices require us to 
treat electrons and phonons on an equal footing. 

Those of us who come to this field from 
electronics naturally ask:  “How can we adapt the 
tools, techniques, and concepts developed for 
electronics to phonons?” “What is different for 
phonon transport and what is similar to electron 
transport.” This talk will use two simple 
approaches to address these questions. Another 
important question is: “How do we connect 
rigorous simulations to the phenomenological 
equations that device designers and 
experimentalists need?” This talk will also address 
this important question. 

 
 

TWO SIMPLE EQUATIONS 

Two simple equations will be used. The first is 
the Landauer approach, 

   
I = 2q

h
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and the second is the McKelvey-Shockley version 
of the Boltzmann equation, 
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The talk will discuss how these two approaches 
can be applied to both electrons and phonons and 
how they can be connected to rigorous 
simulations. 

RESULTS 
Figures 1-6 are some of the results that will be 

discussed. 

CONCLUSION 
As discussed in this talk, the approaches that 

have been developed for electron transport can be 
readily extended to phonon transport, and they 
provide useful tools as well as new insights. 
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Fig. 1. The electron dispersion for bulk Si as computed by 
DFT simulation. 
 
 

 
Fig. 2. The number of channels vs. energy for bulk Si. The 
initial increase from the band edges is linear for parabolic 
energy bands. 
 

 
Fig. 3. The electron window function (which indicates which 
channels are occupied) and 

 
Mel E( ) for Si. Note that only 

electron channels very near the bottom of the band are 
occupied. 

 
Fig. 4. The phonon window function, which indicates which 
channels are occupied and 

  
M ph !ω( )  for Si. Note that all 

phonon channels are occupied at 300 K. 
 

 
Fig. 5.  Illustration showing that in bulk Si, phonons with a 
MFP greater than one micrometer contribute 50% to the 
thermal conductivity.  

 
Fig. 6.  Temperature vs. position in a Si films showing 
temperature jumps at the contacts due to ballistic transport. 
Symbols, BTE solutions, lines: Fourier’s Law when properly 
implemented (from [2]). 
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