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I. INTRODUCTION

After performing one-dimensional simulation of electron
transport in narrow quantum wires without gate control in
Ref [1], [2] using the open boundary-conditions full-band
plane-wave transport formalism derived in Ref [3], we now
extend the work to simulate three-dimensionally field-effect
transistors (FETs) with a gate bias applied and obtain their
transport characteristics. We optimize multiple procedures for
solving the quantum transport equation (QTE), such as using
a selected eigenvalue solver, the fast Fourier transform (FFT),
block assignment of matrices, a sparse matrix solver, and
parallel computing techniques. With an expanded computing
capability, we are able to simulate the transistors in the sub-
1 nm technology node as suggested by the ITRS [4], which
features ∼5 nm physical gate length, ∼2 nm body thickness,
∼0.4 nm effective oxide thickness (EOT), ∼0.6 V power
supply voltage, and a multi-gate structure. Here we simulate
an armchair graphene nanoribbon (aGNR) FET using a gate-
all-around architecture and obtain its transport properties. We
will discuss the numerics concerning the matrix size of the
transport equation, memory consumption, and simulation time.

II. THEORY

As shown in Ref. [2], the Schrödinger equation describing
the electronic band structure in one-dimensional (1D) nanos-
tructures in the (x-z) plane, surrounded by a large vacuum
padding in the (x-y) plane to decouple the structures, using
the empirical pseudopotential method is
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where k = (0, 0, kz) is the wavevector along the axial z-
direction. This constitutes an eigenvalue problem of rank given
by the number of reciprocal-space vectors NG within the
energy-cutoff sphere of radius Ecut. The QTE describing the
1D electron transport along the z direction is a linear system
of the form

(H− EI+ΣL +ΣR)φ = [RHS]
inj
L + [RHS]

inj
R , (2)

where H is the Hamiltonian for the closed system, E is
the injection energy of electrons, I is the identity matrix,
ΣL and ΣR are the self-energies of the contacts, φ is the
envelope wavefunction, and [RHS]

inj
L and [RHS]

inj
R are the

terms representing the amplitudes of the waves injected from

the contacts (self-energies). Using finite difference (FD) and
discretizing a device into Nz slices along the transport di-
rection with a step-size ∆, the Hamiltonian H takes a block
tridiagonal form

H =




· · · · · · ·
· T− Di−1 T+ 0 0 ·
· 0 T− Di T+ 0 ·
· 0 0 T− Di+1 T+ ·
· · · · · · ·



, (3)

where the operator Di is a dense matrix of rank NG that in-
cludes the lattice and external potential (gate and source/drain
bias) in the i-th slice, and the Hermitian operators T+ and T−

are diagonal matrices also of rank NG. Therefore, the rank
of H is NG × Nz . The self-energy matrix ΣL is added to
D1 and ΣR is added to DNz . Solving Eq. (2) and Poisson’s
equation self-consistently for different drain-source bias and
gate bias, the current-voltage characteristics of the device can
be obtained. Since we have not yet implemented in our com-
puter program the capability to account for bound and quasi-
bound states, we are unable to perform full self-consistent
calculations. Therefore, for now we solve Eq. (2) with an
external potential obtained from a self-consistent calculation
within a simple semiclassical drift-diffusion approximation.
This is performed by solving the two-dimensional Schrödinger
equation in all slices, calculating the charge density using
local quasi-Fermi level, and then solving Poisson’s equation
to update the potential. An approximate device current is
calculated from the obtained envelope wavefunctions φ.

III. SIMULATIONS AND RESULTS

An atomistic model of an aGNR with six dimer lines along
the width direction x is shown in Fig. 1a and a device model
of 6-aGNRFET is shown in Fig. 1b. The channel has p+

doping and the source and drain contact have n+ doping. The
discretization is shown in Fig. 1c and 1d. The band structure
of the 6-aGNR is calculated by solving Eq. (1) and shown in
Fig. 2. The self-consistent external potential and charge distri-
bution within the aforementioned semiclassical drift-diffusion
simplification are shown in Fig. 3 and their distribution after
non-equilibrium quantum transport simulation are shown in
Fig. 4. The I-V characteristics are shown in Fig. 5. Some
information about the numerical details of the calculations is
shown in Table. I.

65ISBN 978-0-692-50554-0



a3 

1 
2 
3 
4 
5 
6 

armchair edge H termination 

z 

x 

(a) 6-aGNR model (a3=3dC=C = 0.43nm) (b) 6-aGNRFET model

(c) Discretization along z (d) Discretization in (x-y)

Fig. 1: Device model of 6-aGNRFET with an overall length
L=30a3=12.78 nm, a physical channel length Lg=5.12 nm,
a body width W=0.62 nm, and an EOT=0.62 nm. Electron
transport is along the z direction. The device is discretized
along z into Nz=121 slices with ∆=a3/4=0.11 nm and
discretized in the cross-sectional (x-y) plane using a finite
element mesh. Notice that this particular triangular mesh is
for FFT calculations.
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(a) 6-aGNR band structure
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(b) |ψ(r||)|2 distribution in (x-y)

Fig. 2: The electronic dispersion of the first six low-energy
conduction bands (CBs) is shown in (a). Within 100 meV
from the bottom of the CB, only one conducting channel
is observed. The electron probability distribution |ψ(r||)|2 is
shown in (b). This is obtained by averaging the square of
the cross-sectional wavefunction over one unit cell along z. A
selected eigenvalue solver from IBM ESSL package is used to
calculate the bands in the interesting energy range, and FFT
is used to calculate |ψ(r||)|2 from Eq. (1).
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Fig. 3: Approximate potential and charge distribution, aver-
aged along y, in the (x-z) plane after self-consistent calculation
with the semiclassical assumption for a 6-aGNRFET with a
drain-source bias VDS=0.4 V and a gate bias VGS=0.2 V.
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Fig. 4: Potential and charge distribution, averaged along y, in
the (x-z) plane from Eq. (2) for a 6-aGNRFET. Quasi-bound
states can be observed in the region close to the drain contact.
Note that variation of the electron density corresponds to the
location of individual atoms.
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Fig. 5: Current-voltage characteristics of a 6-aGNRFET.

TABLE I: Rank of the matrices, simulation time, and
memory consumption when simulating a 6-aGRNFET

NG t (s, Eq. (1)) t (h) LDM t (h) Memory (GB)
701 10 2.5a 84821 0.2b 5.0c

a Simulation time required to obtain the starting potential self-
consistently for each applied bias.

b Simulation time required to solve Eq. (2) for a single injection
energy E. MPI is used to solve Eq. (2) in parallel for all the
injection energies.

c Peak memory required to solve Eq. (2). A sparse matrix
solver UMFPACK is used to save memory.
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