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Multi-band k - p models discretized with finite
difference method (FDM) have been widely used to
study electronic properties of semiconductor nanos-
tructures. However, different schemes of FDM exist
in the literature, some of them are numerically
unstable leading to spurious states [1][2], while
others are stable but require special treatment of the
boundary conditions and/or the material interfaces
[31[4][5][6]. Therefore, a comparison of their nu-
merical behaviors (and implementation tricks) will
be very helpful for selecting a suitable scheme and
obtaining reliable results. To this end, we have
implemented into NEMOS simulation software [7]
the following options, (a) centered difference for
symmetrized (SYM) Hamiltonian [1], (b) centered
difference for Burt-Foreman (BF) Hamiltonian [8],
(c) one-sided differences for SYM Hamiltonian [3],
and (d) one-sided differences for BF Hamiltonian
[6]. For all cases, eight-band and six-band models
for both zincblende and wurtzite type materials are
available.

In Fig. 1, we compare the dispersion relations
of bulk InAs (operator ordering is irrelevant here)
discretized with centered and one-sided differences.
Note that Foreman’s Ac=0 strategy [8] has been ap-
plied. It is clear that centered difference causes the
bowing down of the conduction band, implying that
when the structure is confined there will be high-k
oscillating states polluting the low energy window.
The one-sided difference instead approximates the
original continuum band structure quite well.

This has been confirmed by plotting the band
structure of a GaAs-InAs quantum well with SYM
operator ordering (Fig. 2). The centered difference
produces spurious bands appearing almost every-
where around the band gap, whereas the one-sided
difference is free of any of those unphysical bands.
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For BF operator ordering, the one-sided difference
also gives results free of spurious bands (not shown
here). The convergence behaviors of the one-sided
differences for both SYM and BF ordering are
plotted in Fig. 3. It can be observed that the error
decreases with the mesh size and thus they are
numerically stable.

The implementation is simple and straightforward
for the centered difference case, but a bit com-
plicated for the one-side difference case. For the
latter case, in order to avoid artificial spin splitting,
interchange of forward and backward schemes is
required when one goes from one spin group to the
other spin group (Fig. 4). In addition, the imposing
of Dirichlet and Neumann boundary conditions is
tricky. As illustrated in Fig. 5, to enforce Dirichlet
(Neumann) boundaries at the two ends, one needs
to eliminate one row and one column corresponding
to the spin-down (up) conduction band of the first
node, and those corresponding to the spin-up (down)
conduction band of the last node.

For BF ordering, further cares are needed in order
to preserve the geometric symmetry and eliminate
slope anomalies of the wave functions. In partic-
ular, averaged band edges should be used at the
heterojunction interfaces and the mesh points where
they should be placed matter [6]. As a result, the
electron wave function is smooth at the material
interfaces, but shifted forward (backward) by half a
mesh for the first (second) spin group, shown in Fig.
6. As a comparison, the wave functions of the SYM
Hamiltonian using one-sided difference [3] are also
plotted, it is observed that they are not shifted but
there are slope discontinuities around the interfaces.

In summary, centered difference produces spu-
rious solution; one-sided difference gives stable
results but it needs proper cares regarding its im-

37



plementation and interpretation.
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Fig. 1. Eight-band E-k relations of bulk InAs. For discrete
E-k relations, AX = AY = AZ = 0.25nm.
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Fig. 2. E-k relations of a GaAs-InAs quantum well. The
crosses (circles) are results of centered (one-sided) difference.
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Fig. 3. Deviation of the 1st conduction and valence band
energies with respect to number of grids.
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Fig. 4. Interchange of forward and backward schemes for
different spin groups of the eight-band model.

Fig. 5. An example of enforcing Dirichlet (left) and Neumann
(right) boundary conditions for a matrix with 3 nodes (the
matrix size is thus 24). The discretization scheme for each node
is shown in Fig. 4.
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Fig. 6. Wave functions of the lowest (highest) electron (hole)
states, using one-sided differences, for both SYM and BF
Hamiltonian. The spin up and down states are degenerate.



