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INTRODUCTION

A quantum device is a many-body open system
driven far from (thermodynamic) equilibrium. For
ballistic systems, these difficult proble is tradition-
ally solved from the one-particle Schrödinger equa-
tion which only captures non-dissipative (elastic)
scattering of electrons with external potentials. In
principle, one would like to include dissipation
into the previous one-particle wave functions of
the electron. However, strictly speaking, such one-
particle wave functions (for a quantum subsystem)
do not exist in the Copenhagen formulation of
quantum phenomena [1]. Thus, much less intu-
itive mathematical entities are required: the density
matrix [2], its Wigner-Weyl transformation named
Wigner distribution function [3] or the so-called
non-equilibrium Greens function (NEGF) formal-
ism [4]. Fortunately, the concept of one-particle
wave function (of a quantum subsystem) including
dissipation can be rigorously formulated within the
Bohmian explanation of quantum phenomena [5].

ONE-PARTICLE CONDITIONAL WAVE FUNCTIONS

In this conference, we show how dissipation in
quantum transport can be rigorously tackled from
the (conditional) wave function, with the com-
putational burden limited to solving one-particle
wave functions with time-dependent potentials. Let
us consider a many-particle wave function Φ(�r, t)
solution of the unitary Schrödinger equation where
�r = {�ra, �rb} with �ra the position of the a−electron
and �rb = {�r1, ...., �ra−1, �ra+1, ...., �rN} the positions
of the rest. Bohmian mechanics defines the so-called
conditional wave function [1], [6] as:

Ψa(�ra, t) = Φ(�ra, �R
α
b (t), t), (1)

which constitutes a slice of the whole multi-
dimensional wave function Φ(�r, t). All degrees of

freedom are substituted by Bohmian trajectories ex-
cept �ra. It has been demonstrated [6] that Ψa(�ra, t)
obeys the following wave equation:

ih̄
∂Ψa(�ra, t)

∂t
=

{
− h̄2

2m
∇2

a + Ua(�ra, �R
α
b (t), t)

+Ga(�ra, �R
α
b (t), t) + iJa(�ra, �R

α
b (t), t)

}
Ψa(�ra, t). (2)

where the Bohmian trajectories are denoted by
�R(t) = {�Rα

a (t),
�Rα
b (t)} with α an index for the pos-

sible initial positions [1]. The term Ua(�ra, �r
α
b (t), t)

can be any type of many-particle potential defined in
the position-representation. The explicit expression
of the potentials Ga(�ra, �r

α
b (t), t) and Ja(�ra, �r

α
b (t), t)

can be found in reference [6]. It is important to spec-
ify that (2), contrarily to the orthodox Schrödinger
equation, provides a non-linear and non-unitary evo-
lution of the one-particle wave function Ψa(�ra, t)
that allows the modeling of dissipation, decoherence
and (collapse) measurement with minimum compu-
tational difficulties [7].

ELECTRON-PHONON INTERACTION

As an example, we consider the electron-phonon
interaction in a typical AlGaAs resonant tunneling
structure. In particular we consider emission and
absorption of optical phonons with energy h̄ωop =
0.03613 eV . The scattering rates are directly ob-
tained from the Fermi Golden Rule. Under the
assumption that the spatial dependence of the per-
turbing potential is smaller than its temporal depen-
dence, it can be demonstrated that Ja(�ra, �r

α
b (t), t)

in (2) is negligible and Ga(�ra, �r
α
b (t), t) can be

easily approximated to satisfy the electron-phonon
energy conservation. The initial (quantum ensem-
ble) energy 〈E〉 of Ψa(�ra, t) is modified by
Ga(�ra, �r

α
b (t), t) until its final value 〈E〉± h̄ωop. See

figures 1 and 2 and the explanation therein.
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CONCLUSIONS

In this conference, we present a new formalism
to study dissipative transport with one-particle (con-
ditional) wave functions. This new feature has been
included, as the last step, into the general, versatile
time-dependent BITLLES simulator [8]. Previous
features included into the BITLLES are electron-
electron interaction beyond mean field [9], open
system boundaries [10], exchange (fermion) inter-
actions [11], [12], noise computation [7], [13] and
high-frequency displacement currents [14]. This last
ingredient, the quantum dissipation, clearly justifies
why the BITLLES simulator is the natural (full)
quantum extension of the Monte Carlo algorithm
for the semi-classical Boltzmann equation, where
the dynamics of the electron trajectories are guided
by the one-particle (conditional) wave function dis-
cussed in (2) rather than by the electric field.
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Fig. 1. (Red) Time-evolution of a wave function and associated
trajectories solution of the one-particle Schrödinger equation
and (Blue) Time-evolution of a (conditional) wave function and
associated trajectories solution of the one-particle wave in (2)
where the absorption of a phonon is considered. (Green) the
free space potential. Initial wave packet energy 〈E〉 = 0.05eV .
The (blue) conditional wave function and its trajectories have
a larger velocity (kinetic energy) than the (red) Schrödinger
wave function after the interaction with the phonon. From a
computational point of view, only a proper shape of the term
Ja(�ra, �r

α
b (t), t) in the time-dependent wave equation (2) is

required to discuss dissipation.
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Fig. 2. The same data as in Fig. 1 for a double barrier
1nm/4nm/1nm structure plotted in green. Barrier height 0.3 eV.
Initial wave packet energy 〈E〉 = 0.1eV . The (blue) condi-
tional wave function and its trajectories have a larger velocity
(kinetic energy) than the (red) Schrödinger wave function after
the interaction with the phonon. In addition, the interaction
with the phonon slightly increases the number of reflected
trajectories. This is due to the fact that the energy of the electron
after interacting with the phonon deviates from the resonant
energy.
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