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In this abstract we present two variants of a
new approach to simulate surface roughness (SR)
scattering with Ando’s model and the multi-subband
Boltzmann transport equation (BTE) [1]. An crucial
step to obtain the SR matrix element is the inte-
gration of the product of wave functions (of the
initial and final state) over the length of the SR
deviation in the direction normal to the boundary
surface. Typically one expands this integral up to
first order of the SR deviation, usually even taking
the limit of an infinite barrier height, known as the
Prange-Nee (PN) approximation [2]. The validity
of these approximations can be seriously doubted
when applied in metal nanowires, as small diameters
lead to substantial wave function penetration in the
barrier while a large number of subbands is still
present, allowing for wave functions that oscillate
many times over the typical SR deviation length
(see Fig. 1). However, this type of approximation
allows for a replacement of the SR deviation by
its auto-correlation function (ACF), leading to an
analytical expression of the absolute value squared
of the matrix element that appears in the collision
term of the BTE [3].

The SR integral can still be solved analytically for
the finite potential well with averaging over the SR
if an appropriate SR distribution function f(S, S′)
is chosen, with S, S′ the SR deviations at different
positions on a wire boundary. We propose to use a
distribution functions on a finite domain (−
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with ∆ the SR standard deviation, C the correlation
of the SR at the different positions, provided by a
given ACF (here Gaussian) and θ the step function.

We compare the resistivity results with the bivari-
ate normal SR distribution function, that was recently

proposed by Lizzit et al., for a one subband toy
model in Fig. 2 [4]. The distribution functions have
different disadvantages (fI : negative weights when
C > 3/4, fII : Dirac delta peak for S = S′, bivariate
normal: non-zero probability for SR crossing the op-
posite wire boundary) but mutually agree quite well,
while the PN result is incorrect. The finite domain
models allow for fast and accurate simulations due to
their analytic expression, while the bivariate normal
model requires numerical treatment. Hence with the
latter approach simulations are much slower (see
Fig. 3) and we were unable to study metal wires
with larger diameters.

For larger diameter simulations the first order
approximation and finite domain models agree well
on the diameter scaling trend, but the predicted
resistivity values differ up to a factor of 2 (see
Fig. 4). The PN model works much better than for
the one subband model and in certain cases even
better than the first order approximation, however
this is believed to be coincidental.

A large resistivity drop is observed for D ≈
3.25 nm for all methods and appears when the
bottom of all subbands is as far below the Fermi level
as possible. In this case back-scattering of the Fermi
level states is suppressed and the current is protected.
The predicted resistivity values for this drop are in
good agreement for the finite domain models, while
the approximate methods deviate substantially.
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(a) Rough boundary position: -0.5 nm

(b) Rough boundary position: 1 nm

Fig. 1. A product of wave functions for a wire with width of
approximately 2.15 nm and the integral up to the rough boundary
position are shown as a shaded area under the curve. The correct
value in the SR matrix element of Ando’s model should be the
area under the wave function product, but the PN and the first
order approximation replace this area by a rectangular box.

(a) One subband toy model

(b) Resistivity

Fig. 2. In (a) the dispersion relation of a one subband toy model
is shown with the momentum gap ∆kz indicated. The resistivity
values obtained with the SR matrix elements of Ando’s model
are shown in (b), using the PN and the first order approximation,
the two newly proposed variants: using fI and fII , and the
bivariate normal model [4].

Fig. 3. The computation times (t) for the SR matrix elements
are shown in a logarithmic scale for the different methods: the
Prange-Nee approximation (PN), the first order approximation
(First order), the approach with a finite domain distribution
function using fI (Finite domain I) and fII (Finite domain II),
and the bivariate normal distribution function (Bivariate normal).
The timescale is in milliseconds and corresponds to the one
subband toy model simulation shown in Fig. 2.

(a) Subbands

(b) Resistivity

Fig. 4. The resistivity for copper nanowires with square cross-
section of equal sides D ranging from 2 to 6 nm (SR standard
deviation of 2aCu ≈ 0.7 nm and correlation length of 5aCu ≈
1.75 nm) are shown in (b), using the different methods for
Ando’s model that are computationally feasible (same methods
as in Fig. 3 without Bivariate normal). The subbands dropping
below the Fermi level of the D ≈ 2.15 nm wire are shown in
(a).
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