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INTRODUCTION

Graphene has many revolutionary properties for
fundamental and applied physics. In particular, its
linear dispersion implies unexpected restrictions for
electron dynamics. In time dependent (classical
or quantum) particle-based simulators, one needs
an algorithm to determine when (and with which
properties) electrons are injected from the reservoir
into the simulation box [1], [2]. To the best of
our knowledge, an electron injection model for
graphene is missing in the literature.

PHASE-SPACE DENSITY OF ELECTRONS

A mandatory requirement for an accurate in-
jection model is reproducing the phase-space
density [3]. It is well known that the maxi-
mum number of electrons, whose positions x, z
and wave vectors kx, kz fit inside the (2D)
phase-space region ∆x∆Kx∆z∆Kz , is N =
gsgv∆x∆Kx∆z∆Kz/(2π)2, with gs spin and gv
valley degeneracies. See Fig. 1.

PHASE-SPACE DENSITY OF INJECTED ELECTRONS

As seen in Fig. 2, when developing an injection
model, we are interested in the number of electrons
crossing a particular graphene-graphene surface by
unit time. In the 2D material, all electrons in the
(small) phase-space region ∆x∆z∆Kx∆Kz move
to another spatial region during the time interval
T = ∆x/vx being vx the x-component electron
velocity. Therefore, the time between injections is:

to = T/N = (2π)2/(gsgv∆z∆Kx∆Kzvx) (1)

where the velocity can be either

vx = vgkx/
√
k2x + k2z (linear dispersion) (2)

with vg = 3e6 m/s the graphene Fermi velocity, or

vx = h̄kx/m (parabolic dispersion) (3)

with m = 0.9mo the (Silicon) parabolic effective
mass. The phase space density of injected electrons
defined as N/T = (to)

−1 ∝ vx is plotted in
Fig. 3 for parabolic bands and Fig. 4 for linear
ones. Almost all graphene electrons moves at the
maximum velocity vg, while a much larger velocity
dispersion appears in Silicon.

ALGORITHM IMPLEMENTATION

Since vx depends on both wave vector compo-
nents, the graphene electron injection model re-
quires a 2D mesh of the wave vector space, with
Kx = Mx∆Kx and Kz = Mz∆Kz . While a 1D
mesh is required when (3) is involved. In each cell,
the electron velocity is roughly constant. At each
simulation time step, from (1), N = int(T/to)
attempts to inject an electron is done. The injection
is successful if the Fermi-Dirac function f(Ef , E)
is grater than a random number r ∈ [0, 1], with Ef

the Fermi energy and E the electron energy.
For a very simple ballistic model, the (instanta-

neous) current computed from I = qvx/Lx provides
dramatic differences between parabolic (Fig. 5(a))
and liner (Fig. 5(b)) band structures. The current
dispersion (noise) of both types of dispersion are
radically different [4].

CONCLUSION

We present a (time dependent) electron injection
model for 2D linear dispersion (graphene) materials.
The model includes the thermal noise (and discrete
nature of charges) of the reservoir and the injected
electrons in the borders of the simulation box satisfy
the required phase-space density (faster electrons
need to be injected more often than slower ones) [4].
For (classical or quantum) particle-based stimulator
of graphene, such injection from a 2D wave vector
mesh is mandatory for accurate predictions [5].
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Fig. 1. (a) The presence of N=9 electrons in a region of
the 1D phase-space implies that the probability P (Φ) of N=10
electrons inside this region is almost zero. (b) Contour plot of
the right figure where each electron is separated a normalized
distance d from the rest [3]. Each electrons requires a phase
space region equal to 2π.

Fig. 5. Number of electrons as a function of instantaneous
current I they take during a simulation time of 3.1 ps at 100 K,
with Fermi energy Ef = 0.1 eV for (a) Silicon (b) Graphene.
Almost all graphene electrons move at the same velocity and
carry the same instantaneous current. We use gs = 2 and
gv = 1. This effect has important implications in the intrinsic
behavior of AC and noise graphene performances [4], [5].
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Fig. 2. Schematic representation of the (graphene) reservoir
(graphene) simulation box interface where the injection of
electrons takes place.

Fig. 3. Number of injected electrons computed from Eq. (1)
with gs = 2 and gv = 1 at each point of the 2D wavevector
space {kx, kz} for Silicon during a simulation time of 100 ps at
100 K, with Fermi energy Ef = 0.1 eV . Highest injection rate
appears at highest energies. The velocity vx does only depend
on {kx}.

Fig. 4. The same plot as in Fig. 3 for graphene. The highest
injection appears in almost all points of the 2D wavevector
space {kx, kz}. except those with high kz [4]. The velocity vx
does explicitly depend on {kx, kz}.
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