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The interest recently raised, in the scientific and

industrial community, by graphene electronics has

prompted the need for efficient transport simula-

tion codes for graphene-based devices. For rela-

tively large structures, atomistic approaches are too

time consuming and it is necessary to resort to

a continuum description, based on the solution of

the envelope function equation (i.e., for monolayer

graphene, the Dirac equation [1]). We have recently

proposed a method [2] for the simulation of arm-

chair ribbons in the presence of a generic potential.

The ribbon is subdivided into several thin slices

within each of which the potential can be considered

as constant in the transport direction (a procedure

analogous to that we previously adopted for the

study of heterostructure-based devices [3]–[7]). In

each slice, the Dirac equation can be recast into

a problem with periodic boundary conditions [8],

which can be efficiently solved in the reciprocal

space [2] (or, equivalently, in the direct space using

a basis of sinc-related functions [9]), obtaining

the longitudinal wave vectors and the transverse

components of the envelope functions. Then, the

overall conductance is computed applying a scat-

tering matrix approach. In the case of a ribbon

with uniform width, the scattering matrices relat-

ing couples of neighboring slices are obtained by

enforcing the continuity of the components of the

wave function on the sublattices A and B along the

overall width. In detail, these continuity equations

are projected onto a basis of sines extending along

the overall width, in such a way as to obtain a linear

system in the unknown reflection and transmission

coefficients.

Here we describe how this method can be ex-

tended to the case of a graphene structure with

width discontinuities, made up of several armchair

sections.

Generalizing the procedure used to enforce the

boundary conditions in armchair and zigzag rib-

bons [1], we consider the effective boundary of

the graphene structure along the lines of lattice

sites located just outside the true carbon structure

(and represented with dashed circles in Fig. 1). In

Fig. 1, with dotted lines we indicate the resulting

discontinuities between armchair sections with dif-

ferent width. We notice that the atoms on each of

these lines belong to a single sublattice: let us call

this sublattice α and the other one β (in Fig. 1

α = B along the left discontinuity and α = A

along the right one). Each of these lines consists

of: (a) zigzag segments of the effective boundary,

and (b) segments which instead fall inside the area

enclosed by the effective boundary. The conditions

we have to enforce are: the vanishing of the only α

component of the wave function along the segments

(a) (in analogy with the condition imposed at the

boundary of a zigzag ribbon [1]), and the continuity

of both components of the wave function along the

segments (b). Numerically, this can be obtained (in

analogy with Ref. [10]) with a scalar projection of

the α component of the wave function on a basis

of sines of the overall discontinuity, and with a

spinorial projection of both components of the wave

function on a basis of sines of the segments (b).

As simple examples, in Fig. 3 and in Fig. 5

we report the conductance obtained, following this

approach, for the configurations shown in Fig. 2 and

in Fig. 4, respectively.
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A−sublattice site inside graphene

B−sublattice site outside graphene

B−sublattice site inside graphene

A−sublattice site outside graphene

Fig. 1. Schematic representation of the graphene lattice in the presence of width discontinuities.
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Fig. 2. Graphene structure with a width discontinuity, in the

presence of a potential given by the sum of two Lorentzian

functions with half-width at half-maximum 4 nm and peak

height 70 meV.
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Fig. 3. Conductance behavior, as a function of the Fermi

energy, for the structure and potential represented in Fig. 2.
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Fig. 4. Graphene constriction, in the presence of a potential

given by the sum of two Lorentzian functions with half-width

at half-maximum 4 nm and peak height 70 meV.
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Fig. 5. Conductance behavior, as a function of the Fermi

energy, for the structure and the potential represented in Fig. 4.
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