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INTRODUCTION

Herein, the creation of interface phonons in silicon is
modeled in metal-SiO2-Si heterostructures based on plasmon-
excited generation of longitudinal optical phonons in polar
SiO2 which in turn evanesces into the silicon via a remote
polar phonon mechanism [1]–[3]. Recent study also suggests
that large-amplitude acoustic pulses can be generated by
ultrashort surface plasmons [4] These studies presented herein
are stimulated, in part by the hot luminescence with relatively
high efficiency in bulk silicon with a silver nanocavity and
5 nm thick silicon dioxide (SiO2) interlayer [5], of which the
internal quantum efficiency is very low by silicon itself. In this
abstract, we will demonstrate coherent interface phonon pro-
duction with high phonon occupation numbers. The generation
of such nonequilibrium phonons with high occupation number
is of interest in many areas including: carrier transport, studies
of phonon decay rates, studies of phonon-assisted processes
[6]–[8], and second order processes requiring both phonons
and photons.

THEORY

When the electromagnetic field pulse is sufficiently short
comparing to the phonon mode of a material, impulsive
stimulated scattering (ISS) can occur [9]. Unlike phonons
generated from ordinary scattering processes, the phonons
generated as a result of ISS are in the same mode. These
”coherent” phonons, which can be ”selected” [10], would
have high phonon occupation number. On the other hand,
laser incident on metal creates plasmons at the metal-SiO2

interface. Since surface plasmon polaritons can be defined as a
specific set of surface electromagnetic modes [11], we assume
the plasmons as an amplified electric field in this abstract;
the magnitude of triggering pulse will be treated as simply
the Purcell enhancement factor times the magnitude of the
electric pulse. The polar phonons generated by laser-induced
plasmons evanesce into the silicon. The coherent optical
phonon displacement can be calculated from the equation of
motion as following [10]:

Q(z > 0, t > 0) = Q0e
−γ(t−zn/c) sin [ω0(t− zn/c)]

where
Q0 = 2πINα′e−ω
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where I is the magnitude of the triggering pulse, α′ is the
differential polarizability, τL is the pulse duration. The optical
phonon displacement is plotted in Figure 1 for silicon inside
the nanocavity in 140 fs laser pulse at 4.11 ∗ 1015Hz. For
the given phonon displacement, the energy loss due to the
emission of coherent optical phonons is given by [10]:
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PHONON POTENTIAL

The screening length of the metal in the structure under
study is δ and the thickness of oxide is d (from 0 to d). Let
the phonon potentials (Φ) for the given structure be defined
as follow: Φ = Ae−q(z−d) when z>d

Φ = Beqz + Ce−qz when 0≤z<d
Φ = Dez/δ when z<0

By using appropriate boundary conditions and the normal-
ization condition, we can then get the secular equation for
this structure whose solution will be the interface phonon
potentials of this system [12]:
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DISCUSSION

We found that the energy loss due to the emission of coher-
ent optical phonon in SiO2 to be about 5 % of the plasmons,
which is about 135 meV with 2.7 eV. Parameters used in the
calculation are summarized in Table I. Simultaneously, the
phonon potential calculation shows in Figure 2 that the 143
meV Si-SiO2 interface phonon is produced. This indicates that
almost every plasmon produces a coherent optical phonon at
Si-SiO2 interface: this mechanism could be a possible source
of massive nonequilibrium phonon production which would
lead to many areas.
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Fig. 1: Coherent optical phonon displacement in silicon

Metal-SiO2-Si Interface Polar Phonon Modes

q = 108 m-1

153 meV mode at zone center; 142.6 meV

Metal SiO2 Silicon

Fig. 2: Interface phonon potential of Metal-SiO2-Si system

Parameter SiO2

Density of Oscillator 2.3 ∗ 1022 atoms/cm3

Amplitude of the field 7420 V/cm2

Frequency of the field (ω) 6.52 ∗ 102 THz
Refractive index 1.55181 at 4.11 ∗ 102 THz
Pulse duration 50 fs
Damping constant 0.37 ∗ ω
Scattering cross section 2.8 ∗ 10−14cm2

TABLE I: Parameters used to calculate the energy loss due to the
emission of coherent optical phonon in SiO2
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