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We investigate how a finite coherence length influ-

ences the calculation of the Wigner potential (WP)

in terms of momentum resolution and computa-

tional aspects, in addition to the physical meaning

attributed to it. Firstly, we define the semi-discrete

WP:

VW (r,P) ≡
1

i~L

ˆ L/2

−L/2
ds e−i2P∆k·sδV

δV (s; r) ≡ V (r+ s)− V (r− s) ,

(1)

where the position vectors, r and s, are bounded

by the (active) device length, Ldev, and the coher-

ence length, L, respectively. The momentum vector,

P∆k, is discretized in steps of ∆k = π
L

, which

makes the full discretization of (1) akin to a discrete

Fourier transform (DFT) of the potential difference.

From a computational point of view, the coher-

ence length affects the momentum resolution ∆k,

therefore, L must be chosen sufficiently large to

resolve the spectral content of the device profile.

Fig. 1 shows different potential profiles, with their

corresponding WP, for a fixed position, in Fig. 2.

The potential profiles were chosen to have known

spectral components (P-values) that should appear

within bins 1 and 2 only. Therefore, the values

at higher bins are not attributable to the physical

profile, but rather the ’spectral leakage’ effects in-

herent, when applying the DFT to a non-periodic

function. The WP is normalized to represent a prob-

ability distribution for the generation of particles

with a given momentum offset P (negative values

of Vw represent a negative offset; −Vw(·,P) =
Vw(·,−P)). To attain a distribution which better

represents the physical profiles, we apply a Tukey

window [1] to smooth (only) the sharp edges of

the potential profile. Fig. 3 shows that by apply-

ing the Tukey window the (unphysical) higher bin

values are suppressed, while the actual spectral

components of the profile, at bins 1 and 2, remain

pronounced. This results in a relative change of

the probability distribution (Fig. 4), which better

reflects the physical situation in the device, by

highlighting the bins the actual potential influences.

Several physical viewpoints are possible when

choosing the coherence length: If decoherence ef-

fects are not modelled through the choice of L it-

self [2] – e.g. [3] considers an exponential damping

which essentially reduces L to model decoherence

– the coherence length should be chosen to (at least)

cover the extent of the device at every point where

the WP is calculated; this implies L ≥ 2Ldev.

However, under the physical assumption that no

coherence exists between contacts, we must adopt

L = Ldev. Nonetheless, when calculating (1) at

any point other than the centre of the device, i.e.

VW

(

r 6= L

2 , ·
)

, the boundaries of the device are

exceeded and therefore the potential is unknown.

Two limiting approaches to treat this situation are

to i) regard any point outside the device to be in

a contact region and extend the potential value at

the boundary as a constant, or to ii) assume no

coherence exists between the device and the region

outside, and progressively reduce the coherence

length as the boundary is approached. Fig. 5 reveals

that the difference between these two approaches

is significant. Approach ii) implies a decreasing

value of ∆k as the boundary is approached. To

efficiently interpolate the values onto the fixed, finer,

momentum grid, the potential difference in (1) is

zero-padded at the front and back.

We have highlighted some of the implications a

finite coherence length has on numerical simula-

tion along with possible treatments, but, ultimately,

the choice of the boundary conditions reflects the

adopted physical interpretation and remains a chal-

lenging research topic [4].
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Fig. 1. Various potential profiles with known spectral content,

reflecting a 1.3 V bias between the left and the right contacts.
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Fig. 2. Wigner potential at a fixed position, VW (x = 50, P ),
for the profiles in Fig. 1, calculated with a coherence length of

L = Ldev .
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Fig. 3. The unnormalized WP, VW (x = 50, P ), calculated at

the centre of the device with and without the application of a

smoothing Tukey window (α = 0.2), using Profile 3 (blue) in

Fig. 1, and a coherence length of L = Ldev .
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Fig. 4. The relative absolute difference of the probability

distributions (normalized WPs) calculated with and without the

application of a smoothing Tukey window (α = 0.2), using

Profile 3 (blue) in Fig. 1. A coherence length of L = Ldev is

used, along with boundary approach i) discussed in the text.
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Fig. 5. The absolute value of the difference of the (normal-

ized) WPs corresponding to the different boundary treatments

(discussed in text), using Profile 3 (blue) in Fig. 1.
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