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Abstract. The so-called Numerov process provides a
three-point interpolation with an ∼ η5 accuracy in grid’s
size η, much better than the standard finite-difference
scheme that keeps the ∼ η2 terms. Such a substantial im-
provement is achieved with a minor increase in computa-
tional cost. As the method is applicable to second-order
differential equations in one dimension, it is an ideal tool
for solving, e.g., the Poisson and Schrödinger equations
in ballistic electron devices, where the longitudinal (that
is, along the channel) problem is typically separated from
the lateral one and solved over a uniform grid. Despite
its advantage, the Numerov process has found limited
applications, due to the difficulty of keeping the same
precision in the boundary conditions. A method to work
out the boundary conditions consistently with the rest of
the scheme is presented, and applications are shown.
Theory. Given a device whose channel extends from
x = 0 to x = s, one needs to solve the 1D Schrödinger
equation ψ′′+qψ = 0 for a particle of effective mass m,
with q(x) = (2m/h̄2) (E − V ), E > 0. The potential
energy V (x) is zero outside the channel, so that the
wave vector is k =

√
2mE/h̄ there. The transmission

coefficient of the barrier formed by V in 0 ≤ x ≤ s is

T =
4

2 + (us)2 + (u′s/k)
2 + (v′s)

2 + (kvs)2
, (1)

with us, vs the fundamental solutions of ψ′′ + qψ =
0 at x = s [1]; of them, u solves u′′ + qu = 0 with
the conditions u(0) = 1, u′(0) = 0, while v solves the
same equation with v(0) = 0, v′(0) = 1. Therefore, an
open integration is necessary, which may turn out to be
inaccurate if V is not sufficiently smooth. The Numerov
process for u over three consecutive nodes i− 1, i, i+1
of a uniform grid reads [2]

(1 + ri+1)ui+1 + (1 + ri−1)ui−1 = 2(1 − 5ri)ui , (2)

with ri = η2qi/12. While its structure and computational
cost are similar to those of the finite-difference process
ui+1 + ui−1 = 2(1 − 6ri)ui, its precision is higher

by three orders in η. Unfortunately, while the finite-
difference process readily provides a consistent starting
point of the open integration, u0 = u(0) = 1, u1 = 1
and v0 = v(0) = 0, v1 = η, such a starting point
would be too poor for the Numerov process and would
spoil its accuracy. To calculate u1, v1 to the desired
accuracy we Taylor expand u and v to the 5th-order at
x = 0, and obtain the derivatives of order higher than 1
by differentiating the Schrödinger equation. This yields
u1 = 1 + η2 µ0, v1 = η (1 + ν0), with µ0, ν0 third-
and fourth-order polynomials in η, respectively. Possible
discontinuities in q are taken care of at this stage. The
result shows the order of correction with respect to the
less accurate approximations u1 = 1, v1 = η mentioned
above, and allows for a consistent application of (2) to
calculate u, v over the barrier, and finally determine the
values of us, vs that appear in (1). Finally, the values of
u′s, v′s are calculated by the same token, taking one step
backwards with respect to s.
Conclusions. The method has been tested on the double
barrier of Fig. 1 because the exact solution is known
(e.g., Fig. 2). For a fine grid the wave function obtained
from the finite-difference method and Numerov process
are close to each other and to the exact one (Fig. 3).
At coarser grids the Numerov solution stays close to the
exact one, while the finite-difference one substantially
departs from it over the whole domain (Fig. 4). The
largest error in an open integration is expected to occur
at the end of the domain: Fig. 5 displays |ψ|2 at x = s
as a function of the number of grid nodes. The relative
error is not shown because energy E is off resonance,
which makes |ψ|2 small. An inexpensive, highly accurate
discretization scheme for second-order equations has
been made applicable to practical cases by working
out a treatment of the boundary conditions of equal
accuracy. Typical applications to electron devices are in
the solution of the coupled Schrödinger-Poisson system
in the device channel, as both equations are amenable to
the same scheme.
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Fig. 1. Double-barrier profile.
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Fig. 2. Double barrier: transmission coefficient vs. electron energy
(exact solution).
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Fig. 3. Square modulus of the wave function vs. distance with a
fine grid spacing (η = 10−2 nm, 2000 nodes).
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Fig. 4. Square modulus of the wave function vs. distance with a
coarse grid spacing (η = 2× 10−1 nm, 100 nodes).
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Fig. 5. Square modulus of the wave function at the end of the
domain vs. the number of grid nodes.
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