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Introduction To achieve broader versatility and better
prediction quality the framework of quantum transport sim-
ulations gradually evolves from the tight-binding method
towards the Density Functional Theory (DFT). The two ma-
jor obstacles for this evolution are the high computational
cost of the DFT and its inability to reproduce the correct
band gaps for most of the materials. The modified Becke-
Johnson (m-BJ) exchange functional recently suggested by
Blaha and Tran (BT) allows for a substantial improvement
both in terms of computational efficiency and band gap
precision [1], [2]. These improvements were demonstrated
on a wide range of materials using augmented plane-
wave full-core calculations. However, neither plane-wave
nor all-electron approaches are well suited for simulation
of electron current through nano-scale devices. A large
problem size makes imperative the use of pseudopotentials
and localized orbitals are required to account for non-
periodic nature of the device.

As part of a broader effort in developing Gaussian-
based DFT electron transport code, we have selected 15
technologically important semiconductors, namely AlAs,
Bi2Te3, GaAs, GaN, GaP, GaSb, Ge, HfO2, InAs, InP, InSb,
PbTe, ScN, Si, and SiC to adjust parameterization of m-BJ
exchange functional for use with Bachelet, Hamann, and
Schlüter pseudopotentials (BHS-PP) [3]. Such adjustment
is necessary because (i) pseudo- and all-electron wave
functions differ in the vicinity of nuclei and hence lead
to different exchange potentials, and (ii) pseudopotentials
are designed for use with specific exchange-correlation
functional, i.e. the use of m-BJ exchange together with
BHS-PP derived in the local density approximation (LDA)
may incur substantial errors.

Parameterization Strategy The functional form of
m-BJ BT exchange potential is as follows:
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Here t(r) =
∑N

i=1 |∇ψi(r)|2 is the kinetic energy, ψi

is the ith Kohn-Sham orbital, vBR
x the Becke-Roussel

exchange [4], and ρ(r) the electron density. The key
parameter c allows for band gap tuning: an increase of
c leads to a monotonous increase of the band gap from
an underestimated LDA value to an overestimated exact
exchange. Hence, it is guaranteed that there exists a value
of c = cex reproducing the experimental band gap energy
even if LDA predicts zero band gap as for InSb (Fig. 1)
or InAs (Fig. 2). The value of cex is material specific and
therefore a functional of electron density. Blaha and Tran
suggested that c = A+B 〈g〉, where 〈g〉 is the normalized
electron density gradient averaged over the unit cell volume
Vuc:

〈g〉 = V −1
uc

∫
Vuc

|∇ρ(r)|/ρ(r) dr , (2)

with the universal constants A and B chosen to best fit the

experimental band gap of a large material set.
Leaving intact Eq.(1) we allow for other physical quan-

tities averaged similarly to 〈g〉 to participate in a search of
the parameterization functional form for c. Let Ω designate
the set of such averaged parameters. Each element of Ω
is a one-to-one function of c, which means that variation
of c corresponds to some material-specific curve in the
space with dimension of Ω. Such curve can be viewed as a
function of parametric variable x, i.e. scalar c depends on
scalar x, while x depends on Ω. If there are no restrictions
on the functional form of x, then, without a loss of
generality, a linear dependence of c over x can be assumed:
c = A+B x (Ω), where the constants A, B and function x
are chosen from the best fit to the experimental band gaps.

Discussion Indeed, a combination of BHS-PP and the
original BT parameterization leads to a poor band gap fit.
Nevertheless the m-BJ framework can yield much better
fits in conjunction with BHS-PP if the suggested alternative
parameterizations of c are used. Such parameterizations can
embrace either the full set of 15 semiconductors considered
here or smaller subsets. For example, the parameterization
depicted in Fig. 3 for a set of eight III-V materials and
crystalline hafnium dioxide (AlAs, GaAs, GaN, GaP, GaSb,
InAs, InP, InSb, HfO2) results in a Mean Absolute value of
the Relative band gap Error (MAREEg) of less than 4%. If
one intends to model SiGe transistors doped with arsenic
and phosphorus and with hafnium dioxide serving as a gate
insulator, a set containing Si, Ge, HfO2, AlAs, GaAs, GaP
may be chosen for parameters generation. As shown in
Fig. 4 the MAREEg for this subset equals only 1%.

Parameterizations are based on precomputed derivatives
dc/dx|x=xex depicted as line segments tangential to curves
cex,i(x) passing through cex for material i. These tangents
are used to project the intersection point between Ax +
B and cex,i(x) and to evaluate band gap errors from the
precomputed derivatives dEg,i/dc|c=cex,i . That makes the
parameterization process numerically efficient and allows
for an on the fly parameter generation for each specific
device.

Figure 5 reports cex for all the 15 materials considered
here with MAREEg = 12.5%. Given that BT parameteri-
zation comprises 40 materials and has MAREEg = 10.5%,
we conclude that the BT parameterization within the full
core model has a higher predictive quality. However, even
MAREEg = 10.5% would be too high for many transport
problems, which calls for the device-specific parameteriza-
tions like those in Figs. 3 and 4.

Conclusion A substantial incompatibility between the
original m-BJ parameterization and BHS-PP framework
has been observed. The alternative parameterizations of the
variable c based on first-order error predictions leads to
reasonable band gap fits with relative band gap errors for
device-specific parameterizations within few percent.
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Fig. 1. m-BJ band structure of InSb. The experimental value of the
T = 0 K band gap Eg = 0.238 eV is achieved for c = 0.934. Colors are
used to indicate the predominant contribution of the specific orbital types.
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Fig. 2. m-BJ band structure of InAs. The experimental value of the
T = 0 K band gap Eg = 0.419 eV is achieved for c = 0.888. Colors are
used to indicate the predominant contribution of the specific orbital types.
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Fig. 3. Set Ω = {〈∆〉 , 〈z〉}. Here z(r) =
t(r)
tW (r) is the inhomogeneity

parameter, tW (r) =
|∇ρ(r|2
8ρ(r) the Weizsäcker kinetic-energy density,

∆(r) = ∇2ρ(r)

/(
4
(
3π2
)2/3

ρ(r)5/3
)

the reduced Laplacian of the

electron density. Function c(x) = −7.158 x (〈z〉 , 〈∆〉) − 3.791 was
optimized with 4-parameter fit for a set of 9 materials yielding MAREEg
= 4.0%.
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Fig. 4. Set Ω = {〈T 〉 , 〈z〉}. Here T (r) =
t(r)
ρ(r) is the normalized

kinetic energy density, z(r) =
t(r)
tW (r) the inhomogeneity parameter

and tW (r) =
|∇ρ(r|2
8ρ(r) the Weizsäcker kinetic-energy density. Function

c(x) = 2.892 x (〈T 〉 , 〈z〉) − 0.446 was optimized with 4-parameter fit
for a set of 6 materials. MAREEg = 1.0%.
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Fig. 5. Set Ω = {〈p〉 , 〈α〉}. Here α(r) =
t(r)−tW (r)
tTF (r) is the

deviation from the Weizsäcker kinetic-energy density normalized to the
Tomas-Fermi kinetic energy density tTF (r) = (3/10) (3π)2/3 ρ(r)5/3

and p(r) = |∇ρ(r)|2
/(

4
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3π2
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ρ(r)8/3
)

is the inhomogeneity

parameter. Function c(x) = −2.643 x (〈p〉 , 〈α〉)+0.494 was optimized
with 3-parameter fit for a set of 15 materials. MAREEg = 12.5%.
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