Full Band Monte Carlo Simulation of Phonon
Transport in Semiconductor Nanostructures

Z. Aksamija
Electrical and Computer Engineering Department, University of Massachusetts-Amherst
100 Natural Resources Rd., Amherst MA 01003, USA, e-mail: zlatana@engin.umass.edu

INTRODUCTION

Thermal dissipation in increasingly scaled MOS
devices has prompted strong interest in both phonon
emission and subsequent thermal transport in semi-
conductor nanostructures [1], [2]. New multi-gate
device designs further exacerbate thermal issues
by further localizing heat dissipation [3]. Simul-
taneously, dwindling energy resources have cre-
ated renewed interests in thermoelectric (TE), or
solid-state, energy conversion and refrigeration us-
ing semiconductor-based nanostructures, such as
nanowires, nanoribbons, and superlattices [4]. TE
cooling is also an attractive approach for targeted
cooling of local hotspots inside integrated circuits
due to inherently no moving parts, ease of minia-
turization and on-chip integration, and the nanos-
tructures enhanced TE conversion efficiency. In ad-
dition, thermoelectric power generation enables the
reuse of waste heat in a variety of applications, but
requires dramatic reduction of passive heat losses
through phonon nanoengineering [5]. Consequently,
a deeper understanding of nanoscale heat transfer,
especially phonon transport and phonon interactions
with each other, impurities, and nanoscale bound-
aries, is imperative.

PHONON MONTE CARLO ALGORITHM

In this paper, I will present numerical simula-
tion and modeling of phonon transport based on
solving the phonon Boltzmann transport equation
using the established Monte Carlo method. Several
groups reported progress on phonon Monte Carlo
specifically targeted at silicon nanostructures [6],
[7], [8], but typically lacked two key ingredients:
phonon dispersion was given by an analytical and
isotropic approximation, and phonon-phonon an-
harmonic scattering only conserved energy overall
(typically over all the scattering events in one time

ISBN 978-2-9547858-0-6

step), but did not conseve energy and momentum at
the level of each individual interaction. In this work,
I add the full phonon dispersion computed from the
Adiabatic Bond Charge model [9] and combine it
with the iterative algorithm for anharmonic phonon-
phonon scattering which is capable of conserving
energy and momentum in each individual collision
[10]. During the simulation, each simulated phonon
goes through a sequence of states interrupted by
scattering and sampled after scattering according
to the individual transition probabilities between
the initial and final state as given by perturbation
theory. The resulting simulation is a continuous-
time Markov Chain with a continuous state space.

DISCUSSION

The phonon Monte Carlo simulation is performed
using a fixed number of phonons (typically 10° to
obtain good averages), which helps reduce the com-
putational cost. In the absence of external forces and
gradients, the ensamble converges to the equilibrium
distribution, as shown in Fig. 1. Both relative energy
and number of phonons in each branch fluctuates,
but converges to their equilibrium values after about
20 ns, as shown in Fig. 2 and 3. The thermal
conductivity tensor is extracted using the Green-
Kubo formula for heat flux autocorrelation function
[11]
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where the bracket represents an ensamble average,
N is the total number of time steps (typically
5 x 10°) and At is the time step (typically 1 ps).
A typical autocorrelation function (scaled by its
initial value) is plotted in Fig. 4, where convergence
of both the heat flux and velocity autocorrelation
functions can be observed after around 50 ps, which
is on the order of the phonon relaxation time.
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Fig. 1. Phonon energy histogram (solid line) and the equi-
librium phonon distribution (dashed line) showing excellent
agreement. In the absence of external gradients, the ensamble
fluctuates around and converges to the equilibrium distribution.
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Fig. 2. Difference between average phonon energy and its
equilibrium value for each phonon branch. The energy of
phonons in each branch converges to the equilibrium value after
2-3 ns, much longer than the typical phonon relaxation time (~
50 ps)
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Fig. 3.  Difference between the proportion of phonons in

each branch and its equilibrium value, showing that phonons
redistribute themselves according to the equilibrium distribution
but undergo random thermal fluctuations due to scattering.
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Fig. 4. Scaled heat flux (blue) and velocity (red) autocorrela-
tion functions, showing rapid convergence after around 50 ps
due to randomization of phonon direction during scattering.





