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INTRODUCTION

The quantum cascade laser (QCL) [1] has become
an important device for IR radiation allowing a large
variety of spectroscopic applications [2]. QCLs
are based on optical transitions between electronic
subbands in semiconductor heterostructures. Here
the choice of the layer structure allows to specify
the separation of the upper and lower laser level,
and lasers covering two decades of the optical
spectrum have been realized. A central feature is
that the inversion is obtained by the specific current
flow in biased structures. Thus the operation is
based on an intriguing interplay between tunneling
and scattering transitions which requires a quantum
treatment. Over the last decade our group has devel-
oped a simulation package based on nonequilibrium
Green’s functions which allows for a quantitative
modeling[3]. In this talk, this package is presented
in detail.

SET-UP OF THE SCHEME

We consider a semiconductor heterostructure,
which has a period d in growth direction (along the
z axis), such as a superlattice or a QCL. We use a
basis Ψνn,k(x, y, z) ∝ ϕν(z−nd)ei(kxx+kyy), where
the wavefunctions ϕν(z − nd) are orthonormal for
different combinations of their indices (n, ν). Typ-
ically, we take into account three (n = −1, 0, 1)
periods for QCLs, but more periods are required
for superlattices. The Hamiltonian of the perfect
structure (including the mean field and the oscil-
lating field in the cavity) is diagonal in k and
is fully taken into account. Scattering is treated
perturbatively by self-energies, which become ma-
trices Σnν,n′ν′(k; t1, t2) with respect to the basis
states applied. For given self-energies, we solve the
Dyson equation and the Keldysh relation to obtain

the Green’s function Gnν,n′ν′(k; t1, t2). With these
Green’s functions the self-energies are evaluated
around the central period n = 0, where finite
size effects are least. Applying periodic boundary
conditions the full self-energy matrix is generated.
This procedure is repeated, until convergence is
reached, see Fig. 1.

Currently, the following scattering processes are
included: Polar scattering for optical phonons, de-
formation potential for acoustic phonons, interface
roughness, ionized impurity scattering, and alloy
scattering following standard procedures. As a ma-
jor approximation the scattering matrix elements are
replaced by averaged values for typical k values
of the initial and final state. This provides k-
independent self-energies, which strongly reduces
the memory requirements.

BENEFITS FROM THE MODEL

The Green’s functions provide full information
for the system based on a fully consistent micro-
scopic quantum kinetic approach. Thus all relevant
quantities such as the current density and the gain
spectrum can be evaluated based on nominal sample
parameters. For most samples we find quantitative
agreement for the current with experiment within
20%, see e.g. Fig. 2. Furthermore, we can extract
the energetical distribution of carriers and currents,
which, e.g., allows to identify leakage paths. An
example is given in Fig. 3.
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Fig. 1. Flowchart of our simulations scheme

Fig. 2. Calculated current-bias characteristic together with
experimental data for a THz-QCL. The simulation correctly re-
produces all current peaks. Between the peaks the experimental
current differs. This is most likely due to domain formation,
which is not included in the simulation. From [4]

Fig. 3. Energetically resolved carrier density at the current
peak of Fig. 2. One observes carrier accumulation before
the thick barrier. A thinner barrier would allow for a higher
population of the upper laser, from [4].
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