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Abstract—We will discuss recent development in the
simulation of Boltzmann-Poisson systems and Wigner
transport by deterministic numerical solvers. We have
proposed to solve linear transport problems using a Dis-
continuous Galerkin (DG) Finite Element Method (FEM)
approach that allows adaptivity and accuracy by a flexible
choice of basis functions, as well as numerical efficiency
by parallelization and scalability. In the case of non-
linear transport, spectral methods may be competitive for
the calculation of anisotropic scattering. Such numerical
schemes can be competitive to DSMC methods and have
the advantage of an easy and accurate implementation
of boundary conditions including charge neutrality at
contacts and specular and diffusive reflection at insulating
and interface boundaries.

THE BOLTZMANN-POISSON (BP) MODEL

The dynamics of hot electron transport in modern
semiconductor devices can be described by the semi-
classical (BP) model

∂fi
∂t

+
1

h̄
∇k εi · ∇xfi −

qi
h̄
E · ∇kfi =

∑
j

Qi,j(fi, fj)

∇x · (ε∇xV ) =
∑
i

qiρi −N(x), E = −∇V

where fi(x, k, t) is the probability density function (pdf)
over phase space (x, k) of a carrier in the i-th energy
band in position x, with crystal momentum h̄k at time
t. The collision operators Qi,j(fi, fj) model i-th and
j-th carrier recombinations, collisions with phonons or
generation effects. E(x, t) is the electric field, εi(k) is
the i-th energy band surface, the i-th charge density
ρi(t, x) is the k-average of fi, and N(x) is the dop-
ing profile. The collision operator Qi,j(fi, fj) describes
electron-phonon interactions where most important ones
in Si are due to scattering with lattice vibrations of
the crystal, modeled by acoustic and optical non-polar
modes with a single frequency ωp, whose intra band
transition probability rates are given by the Fermi Golden
Rule and are proportional the phonon occupation factor

[exp
(
h̄ωp

kBTL

)
−1]−1 where kB is the Boltzmann constant

and TL = 300◦K is the constant lattice temperature.
This kinetic system is posed in six dimensions plus

time for a full 3-D device model. Traditionally, this
high dimensional system has been a motivation to be
solved by the stochastic Direct Simulation Monte Carlo
(DSMC) methods. Yet, we proposed in [2] a novel
deterministic approach based Discontinuous Galerkin
(DG) Finite Element Method (FEM) for solving the
Boltzmann-Poisson system that can be very competitive
for hot electron transport calculations. The DG approach
is suitable for strong transport conditions and is very
adaptable and locally accurate due to flexible choices of
basis functions. It is also very suitable for scalability and
parallelization as well as efficient for full band transport
by coupling the BP with Pseudo Empirical Methods for
crystallographic calculations [1], [8] as band anisotropy
far away from the local conduction band minimum, as
it is needed for a correct description of the energy band
and related group velocity for the charge carriers in hot
electronic transport. Detailed description of DG methods
and examples of applications of the DG scheme to 1D
diode and 2D double gate MOSFET devices can be
found in this references. We just mention in Figure 1
a couple of plots of the steady surfaces for the pdf
f(x, k, t) solution of the (BP) system in 2-x space, and 3-
k-wave space simulation of a double gate MOSFET of a
150nm length and 10nm thickness and a 50nm effective
channel.

A new focus is the study of boundary conditions
effects for BP transport. These conditions vary according
to device physics and geometry and they are mainly con-
tact, insulating and interface conditions. Charge neutral-
ity conditions are impose at contacts: fout(t, ~x,~k)|Γ =

ND(~x)fin(t,~x,~d)|Γ
ρ(t,~x) ,Γ subset of ∂Ω~x.

Insulating boundaries conditions at the kinetic level
are also well defined by f(~x,~k, t) = α(k) f(~x,~k′, t) +

(1 − α(k)), Ce−ε(
~k)/KBT

∫
∇~kε·η>0∇~kε · η(~x)fdk for
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Fig. 1. pdf of a single electron carrier for the BP system model for a
2D double gate MOSFET at t = 0.5, (x, y) = (0.09375, 0.10) (left)
and (x, y) = (0.125, 0.12)(right).

(~x,~k) ∈ Γ−N , t > 0 such that ∇~kε(~k
′) = ∇~kε(~k) −

2(∇~kε(~k) · η(~x))η(~x). [4], [9] They represent a con-
vex combination of specular and diffusive reflection
conditions, where the accommodation coefficient α(k)
is a probability density representing the percentage of
specularity that carries information of boundary varia-
tions. When these variations are strong boundary layer
formation may be expected [5], [7], [9].

THE WIGNER-FOKKER-PLANK (WFP) MODEL

As a further application of the DG-FEM scheme,
we also proposed the study by this approach of the
following simple benchmark problem, for the quasi-
classical transport model for the evolution of a single
electron wave function driven by a potential V (x),

∂w

∂t
+∇kε · ∇xw + Θh̄[V ](w) = Q

h̄,FP
(w)

where the function w(x, k, t) is the Wigner transform of
the density matrix ρ(x, y, t), and [10]. is understood as a
quasi-probability function, which may take on negative
values. The nonlocal pseudo-differential operator Θ[V ],
acting on the potential V , is defined by

Θ[V ](w) = −
∫
iδh̄V (x, η)

h̄ (2π)d
w
(
x, k′

)
eiη·(k−k

′)dk′dη,

with δh̄V (x, η) = V (x+
h̄

m

η

2
)− V (x− h̄

m

η

2
).

It is a strongly dispersive operator, except for the har-
monic potential, since Θ[ |v|

2

2 ](w) = q x · ∇kw yields
classical particle transport dynamics.

The right hand side models the averaged environ-
mental interactions with the system and is referred to
as the Quantum Fokker-Planck operator Q

h̄,FP
(w) =

Dqq∆xw+2γ∇kkw+2Dpq

m divx (∇kw)+Dpp

m2 ∆kw which
is derived from a heat bath of harmonic oscillators,
where T is its temperature, λ the coupling constant,

and Ω the cut-off frequency. The coefficients Di,j , for
i, j ∈ {p, q} depend on the scaled Plank constant h̄,
particle mass m, and the Boltzmann’s constant kB as
well as on λ, Ω. In addition they satisfy the Lindblad
condition: DqqDpp − D2

pq ≥ h̄2λ(2m)−2/4, or equiv-
alently Ω ≤ kbT/h̄, [6]. These conditions recover the
quantum mechanically correct evolution of the system,
and convergence to classical Fokker-Planck dynamics
from stochastics as h̄→ 0.

The DG-FEM method for the WFP equation was
developed in [3] along with analytic stability and con-
vergence estimates, as well as numerical experiments
and simulations. The scheme performs very accurately
on on coarse meshes by using dressed basis functions
for bounded perturbations of the harmonic potential
V (x) = |x|2/2. This strategy consists in weighting the
basis functions by either, for example, Hermite functions
or better performing weights are quantum Maxwellian
stationary state of the WFP model for the harmonic
potential V (x). The main challenge was to produce an
accurate and practical treatment of the highly dispersive
pseudo-differential term. The proposed method do this
in a manner that falls neatly into the DG formalism,
and a wide range of potential functions may be treated.
Linear combinations of harmonic, sinusoidal, and step
functions were demonstrated, and it is clear how to apply
the method to Gaussian and other families of potential
functions.

Numerical benchmarks: The DG scheme was im-
plemented in one dimensional domains in (x, k)-space,
partitioned into a regular rectangular mesh. To verify the
numerical implementation, several tests were conducted
using various potentials and different approximation
spaces. We chose h̄ = m = 1 and Ω = 0.

Harmonic potential - Single well: V (x) = x2

2 . For
this choice of potential the Wigner evolution is classical,
and so the initial states evolves spiraling toward a unique
steady state, independent of the initial data. We set an
initial state of three displaced Maxwellians, averaged
to unity: wI = 2

3π{(exp[−2
(
(x− 4)2 + (k)2

)
] +

exp−2(x+ 2)2[exp−(k − 2
√

3)2 + exp−(k + 2
√

3)2)]}.
The convergence to the steady state is depicted in Figure
2, a plot of charge density, ρ(x, t) =

∫
w(x, k, t)dk.

Since density is a projection of the solution onto space
(x, t), wI initially appears to have only two centers
due to a symmetry, which is immediately broken as the
three centers spiral around the origin, exhibiting the
classical dynamics behavior.

Periodic perturbation - Triple Well Finally, the
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Fig. 2. Density plot of the convergence of a three centered initial state
to the unique steady state of WFP equation with a harmonic potential.
The numerical solution is essentially zero in the white regions.

dispersive behavior can be clearly seen when the DG
method is used to calculate the behavior of an ini-
tial Maxwellian in a periodically perturbed confining
potential. The potential used was, V (x) = x2

2 +
30 (1− cos (x)) .

The potential is pictured in the inset in the upper
Figure 3. It has three deep wells, at the origin and near
±2π. The initial state was a Maxwellian concentrated
about a large positive value of x and negative value of k
to give it a rapid initial motion toward the origin. A
projection of the initial state onto the x axis is also
provided in the inset to Figure 3 (its width has been
exaggerated for the purpose of illustration). During the
course of the simulation, the center of mass (charge)
flows down the potential wall, and a short way up the
other side before becoming concentrated in two of the
wells. The total mass is preserved to within 10−5 during
the simulation. The time-step was dt = 0.001, Ω =
[−20, 30]× [−35, 15], and the mesh measured 200×200.
At any given time, the total mass contained outside the
0.005 contour level (the white area) is essentially zero.
The vertical lines at t = 33, 37, 41, and 45 correspond
the snapshots of the solution shown below. The frame
at t = 33 represents a moment when the solution is
spilling over from the well at x ≈ −2π into the well at
the origin. The remaining frames show each part of the
solution completing a circuit of its respective well. As
indicated by Figure 3, the solution settles into these wells
and in each case takes on an appearance very similar to
a pair of Maxwellian.
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