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ELECTRON WAITING TIMES

Investigations of electrical noise and fluctua-
tions in mesoscopic conductors have traditionally
involved measurements of the shot noise and the
full counting statistics of transferred charge [1],
[2]. Recently, the distribution of waiting times be-
tween consecutive electrons has been suggested as
a complementary view on the quantum transport in
sub-micron conductors [3]–[8], [10]. In this talk,
I provide an overview of our Geneva efforts to
evaluate the electronic waiting time distributions
(WTDs) for several types of quantum conductors.
In addition, I provide an outlook on future work and
identify possible avenues for further developments.

THEORY

The electronic WTD is denoted as W(τ) with τ
being the waiting time between subsequent electron
transfers in a nano-scale conductor. The WTD can
be related to the idle time probability Π(t, t0), i. e.,
the probability of observing no electrons in the
time interval [t0, t0 + t]. For stationary processes,
it depends only on the length of the interval t, such
that Π(t, t0) = Π(t). Simple considerations then
lead to the following expression for the WTD [5]:

W(τ) = ⟨τ⟩ d
2

dτ2
Π(τ). (1)

Here, ⟨τ⟩ =
∫∞
0 dττW(τ) is the mean waiting time,

which can be obtained as ⟨τ⟩ = −1/∂τΠ(τ)|τ→0.
For periodically driven systems, a generalization of
Eq. (1) can be formulated [8], [9].

The central task is to evaluate the idle time
probability to obtain the WTD using Eq. (1). For
quantum-coherent conductors the WTD can ob-
tained from scattering theory [5], [8]. For open
quantum systems, it can be found using (non-
Markovian) generalized master equations [3], [4],

[6]. The WTD can also be evaluated exactly for non-
interacting fermions on a tight-binding chain [10].

RESULTS

Figure 1 depicts schematically a quantum point
contact (QPC) connected to voltage-biased elec-
trodes. Figure 2 shows the WTD of a QPC calcu-
lated using scattering theory. Figure 3 shows results
for the WTD of a dissipative double quantum dot
obtained using a generalized master equation.
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Fig. 1. Quantum point contact (QPC) connected to voltage-biased electrodes. The transmission is denoted as T , the Fermi energy
is EF , and V is the applied voltage. The average time between the in-coming electrons is τ̄ = h/eV . The distribution of waiting
times τ between transmitted electrons is determined by the many-body state of the in-coming electrons as well as the QPC which
may cause electrons to reflect back. Reflected (missing) electrons are indicated by dashed lines. The figure is adapted from Ref. [5]
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Fig. 2. Electronic WTDs for a quantum point contact with different transmission probabilities T . a) The waiting time τ is given
in units of τ̄ = h/eV or ⟨τ⟩ = τ̄ /T (inset), where V is the applied voltage. Together with the results for full transmission (T = 1)
we show a Wigner–Dyson distribution (dashed curve). Together with the results for T = 0.1, we show an exponential distribution
(dotted-dashed curve). b) The electronic WTD in the low-transmission regime (T = 0.1). The arrows indicate small oscillations
with period τ̄ . The figure is adapted from Ref. [5].
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Fig. 3. Electronic WTDs for transport through a double quantum dot coupled to a heat bath. a) Weak coupling results (α = 0.01).
Coherent oscillations between the quantum dots are washed out by an increasing bath temperature T . b) Electronic WTDs with
increasing coupling (α) to the heat bath. The figure is adapted from Ref. [6].
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