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INTRODUCTION 
The present von Neumann computing paradigm 

involves a significant amount of information 
transfer between a central processing unit (CPU) 
and memory, with concomitant limitations in the 
actual execution speed. However, it has been 
recently argued that a different form of 
computation, dubbed memcomputing [1] and 
inspired by the operation of our brain, can resolve 
the intrinsic limitations of present day 
architectures by allowing for computing and 
storing of information on the same physical 
platform. In my talk, I will discuss several possible 
memcomputing architectures based on emergent 
memory devices.  

HARDWARE 
Two-terminal electronic devices with memory, 

namely, memristive, memcapacitive and 
meminductive systems [2] (see Fig. 1 for their 
symbols), offer a different approach to computing 
due to their ability to store and process information   
at the same physical location. These devices 
combine the functionality of basic circuit elements 
– resistors, capacitors and inductors – with 
memory   features,   and,   very   often,   nanoscale  

 

 
Fig. 1.  Symbols of memory circuit elements [2]. 

 

dimensions. While the operation of such electronic 
devices is based on a variety of physical 
phenomena [3], their mathematical description is 
universal [2], thus allowing identification of 
general features without regard to specific physical 
processes that lead to memory. 

Complex networks of such devices (such as 
shown in Fig. 2) can be considered as massively-
parallel processors performing computation in an 
unconventional way, which we have named as 
memcomputing [1].  

 

MEMCOMPUTING CRITERIA 
In order to fabricate a viable memcomputing 

device, several criteria must be met. Specifically, 
memcomputing requires [1]:  
- Scalable massively-parallel architecture with 
combined information processing and storage. 
- Sufficiently long information storage times. 
- Ability to initialize memory states.  
- Mechanisms of collective dynamics, strong 
‘memory content’. 
- Ability to read the final result from the relevant 
memelements. 
- Robustness against small variations and noise. 

REALIZATIONS 
Massively parallel analog and digital 

computing architectures based on memory circuit 
elements can be designed in several different ways 
using a variety of physical systems with memory 
[3]. In this talk, I will give an overview of several 
known memcomputing architectures and focus on 
few particular examples related to our previous 
work [4-6]. 
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In particular, recently we have investigated a 
representative memcomputing architecture based 
on two-dimensional networks of memristive 
devices [4,5] (Fig. 2). The main advantage of this 
architecture is based on the analog parallel 
dynamics of many memristive elements. We have 
shown that such networks can efficiently solve 
various shortest-path optimization problems [5]. 
The presence of memory promotes self 
organization of the network into the shortest 
possible path(s). One can introduce a network 
entropy function to characterize the self-organized 
evolution and show that the entropy decreases as 
the shortest-path solution emerges in an initially 
homogeneous network. Additionally, the 
memristive networks have a remarkable ability to 
repair damaged solutions (see Fig. 3). This 
property is very similar to the self-healing ability 
of our brains. 

It is worth mentioning that similar 
considerations apply to networks of 
memcapacitors and meminductors, and networks 
with memory in various dimensions. Some work 
has already been done along these lines. For 
example, the recently developed concept of 
Dynamic Computing Random Access Memory [5] 
utilizes memcapacitors to store and process 
information directly in memory at low energy cost. 
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Fig. 2.  An example of a memristive processor [5] consisting 
of a network of memristive elements in which each grid point 
is attached to several basic units. Each basic unit involves two 
memristive devices connected symmetrically (in parallel) and 
two switches (field-effect transistors).  
 

 
Fig. 3.  Healing (b) of a damaged (a) solution. From [5]. 
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