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INTRODUCTION TO k · p PERTURBATION THEORY

Dresselhaus et al. [1] and Luttinger and Kohn
[2], [3] introduced k · p perturbation theory to
analyze the valence band structure of Ge and Si
and later Kane [4], [5] extended k · p theory to
include conduction bands. Cardona and Pollak [6]
proposed k · p perturbation method to calculate
energy bands in Ge and Si. In this lecture, the k ·p
perturbation theory is discussed in detail. First we
show the energy band calculations of Ge and Si in
the Brillouin zone and then we will show how to
implement the spin–orbit interaction. In the second
part we will discuss the analysis of the valence
bands based on the second order perturbation of
k · p Hamiltonian and the valence band parameters
are determined. In the last part we discuss Luttinger
Hamiltonian so called 4 × 4 (heavy and light hole
bands), 6 × 6 (heavy, light and spin–orbit split off
valence bands), and 8 × 8 (including the lowest
conduction band) Luttinger Hamiltonian [7].

ENERGY BAND CALCULATIONS BY k · p THEORY

Schrödinger equation for an electron in a crystal
is written as[
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]
Ψ(r) = EΨ(r). (1)

The eigen function Ψ is given by Bloch function

Ψ(r) = uk(r) exp(ik · r) (2)

where uk(r) is a periodic function and k is the
wave vector. Putting Eq. (2) into Eq. (1), we obtain[
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Above equation reduces to [H0 + V (r)]uk(r) =
En(0)uk(r) for k = 0 which gives the eigen states
at the Γ point. When we know the eigen states at
k = 0 we may obtain the eigen states k ̸= 0 by
treating H1 = (h̄/m)k · p as a perturbing term.

The first part of this lecture deals with the fol-
lowing items.

1.1 Derivation of k · p Hamiltonian.
1.2 Determination of 15 × 15 matrix of k · p

Hamiltonian and of the parameters.
1.3 Eigen states obtained by 15 × 15 pseudopo-

tential Hamiltonian matrix.
1.4 Energy band calculations.

The second part will deal the analysis of the valence
bands and derivation of Luttinger Hamiltonian.

2.1 Second order k · p perturbation.
2.2 Spin–orbit interaction.
2.3 6× 6 k · p matrix of Dresselhaus et al.
2.4 6× 6 k · p Luttinger Hamiltonian.
2.5 8× 8 k · p Luttinger Hamiltonian.

CONCLUSION

This lecture gives an introduction to k × p
perturbation theory to understand the energy band
structures of semiconductors. The theory is used
to analyze quantum structures such quantum well,
quantum dot and quantum dot superlattices.
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Fig. 1. Empty lattice bands of fcc crystals, where the degen-
eracy in the parentheses and the representations are shown.

Fig. 2. Energy band structure of Si calculated by empirical
pseudopotential method with 15 plane waves.

Fig. 3. Energy band structure of Ge calculated by 15 × 15
k · p method with spin–orbit interaction.

Fig. 4. Energy band structure of Si calculated by 15×15 k ·p
method.
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Fig. 5. Valence band structure. The left figure is without
spin–orbit interaction and the right figure shows the bands with
spin–orbit interaction.

Fig. 6. (a) Bohr orbital motion of an electron −e with the
velocity v as seen by the nucleus Ze is interpreted from the
point of view of the electron as (b) the nucleus Ze is moving
with velocity −v around the electron.


