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MANUSCRIPT 

The Non-Equilibrium Green Function (NEGF) 
formalism was established 50 years ago [1-3] to 
describe non-equilibrium quantum statistical 
mechanics in open systems [4-6]. Clever algorithm 
development [7-10] and the wide availability of 
powerful computer technology has made the 
technically complex NEGF formalism a practical 
simulation tool for studying transport in 
nanostructured devices. The central concept is the 
8-dimensional Green Function G[r, t;r ', t ']  that 
describes the quantum mechanical probability 
amplitude for a carrier to propagate from a 
position r  at time t to another position r ' at time 
t 'within a many-body interacting system that is 
driven out of thermal equilibrium by applied 
fields. G is rarely calculated directly, instead we 
may compute physically interesting properties 
such as the charge density, current density and 
local density of states in computationally efficient 
schemes. NEGF theory is a highly technical 
formalism [1-6] because the need to establish a 
non-equilibrium many-body perturbation theory 
leads to consideration of four different types of 
coupled Green functions. The general case is 
reviewed and we show the connection with semi-
classical Boltzmann transport theory. Our main 
focus is on stationary systems where the Green 
functions depend on two position coordinates and 
energy. Four different Green functions are 
required: we consider the retarded and advanced 
Green functionsGR (r, r ';E), GA (r, r ';E) , (describing 
the dynamical states and quantum dynamics) and 
the so-called lesser and greater Green Functions 
G<(r, r ';E) ,G>(r, r ';E) (correlation functions that 
pick up the mainly statistical or thermodynamic 
properties). A simple picture is developed of the 

basic NEGF simulation methodology. Useful 
visualisation techniques are described based on the 
quantum hydrodynamic velocity field. We start 
with the projection algorithms [7-10] that reduce 
the computational domain to a finite device region 
at the expense of introducing a self-energy 
correction that takes account of coupling to the 
leads/contacts/environment. Criteria are then 
developed for choosing between full complexity 
3D spatial modelling versus the lower dimensional 
modal decomposition method in confined 
nanostructures [11-12]. NEGF methods are 
particularly useful in quasi-ballistic systems where 
the complexity of the self-consistent electrostatic 
architecture of the device (including atomistic 
treatment of the scattering on individual impurities 
and surface/interface roughness) may be 
incorporated non-perturbatively [13-15]. Non-
ballistic nanostructures [16] are now becoming of 
interest for which many-body self-energy models 
are required to describe both elastic and inelastic 
scattering. Examples include gate-all-around 
(GAA) silicon nanowire (SNW) devices (Fig.1) 
that are non-ballistic because: (i) the electron-
phonon interactions [18, 19] are enhanced by 
confinement effects and (ii) long-range remote 
phonon scattering from interfacial regions. Self-
energies are generally non-diagonal [17] and this 
renders the standard Green function algorithms 
intractable. To reduce the numerical complexity 
many adopt approximations to the electron-phonon 
self-energies. We review important self-energy 
models including: electrostatic [20], Hartree, 
exchange and correlation, carrier-phonon/plasmon. 
We examine the errors created by common 
approximations to self-energies that arise from the 
diagonality approximation or violation of the 
requirements for physical causality [21] and we 
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discuss a strategy for efficient accurate numerical 
calculation.  
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Fig. 1. Schematics of a nano-scale transistor.  
           Channel dimensions: 2.2nm X 6 nm [21] 


