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ESSENTIAL GOALS OF THE DISCRETIZATION

Models for the carrier density n in semiconduc-
tors n = N.F(n), n chemical potential, include all
strictly monotonous distribution functions F(7) in
the range defined by Boltzmann-statistics (strongest
increase of density) and the Fermi-Dirac-integral of
order —1 (weakest increase of density), compare
Fig. 1. The latter one appears as vanishing disorder
limit of the Gauss-Fermi-integral [1] for hopping
transport in organic semiconductors and in phase-
separation models [2], where a ’discrete chain rule’
was used to get stability for the discrete problem.

Looking at analytic results for Fermi-Dirac-
statistics (e.g. [3]) and comparing them to those
for the Boltzmann case suggests, that it should
be possible to get all nice properties also for the
discrete problem in the F(n)-case: uniqueness for
small applied voltages; bounded, positive steady
states; existence of a unique transient solution;
dissipativity. Such results are expected to hold for
restricted classes of material models for all bound-
ary conforming Delaunay grids and all time steps.

The goal here is to generalize the Scharfetter-
Gummel-scheme for the above described range. Up
to now degenerate semiconductors may be most
precisely handled by a local, non-symmetric Boltz-
mann approximation and an outer iteration [4]. This
outer iteration multiplies the total computation time,
while a much more complex current relation may
triple the assembly effort only, a small fraction of
the total time.

A FIRST APPROXIMATION

In [5] the approximation introduced by Blake-
more [6] of the distribution function F/5(n) for

small arguments
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was investigated for the governing equation
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describing a constant current j along an edge
[, zp] and the boundary values of the quasi-Fermi
potential p(z,) = ¢, and p(xp) = @p. This case is
sufficiently simple to obtain explicit expressions and
to study the essentials of the non-Boltzmann case,
namely the generalized Einstein relation, describing
the nonlinear ratio between diffusion coefficient and
mobility D/u ~ gs(n), see Fig. 2.

Using Eq. (2), changing variables from quasi-
Fermi potential to chemical potential together with
a linearity assumption of the electrostatic potential
¢ results in the following integral equation for j
along the edge
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Inserting the approximation Fp(n) results in a fixed
point problem for the current [5]:

J = B(0 +7j)e™ — B(=(6¢ +y7))e™, (4

where B(z) = %5 is the Bernoulli function. Due
to the properties of the Bernoulli function this fixed
point problem has a unique solution for the current
and for all finite arguments. Solutions of Eq. (3) for
given potentials are shown in Fig. 3 together with
their Boltzmann counterparts.
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THE GENERAL CASE

The approach is generalized to any strictly mono-
tonous distribution function F(n), —oco < n < oo,
by using a piecewise continuous approximation of
the form

0
J—"- = — . < <M ,
1(77) e+ N =1 > "Ni+1
Na = 705 Mb = Mk4+1, o; >0, v >0.

In this case the left hand side of equation (3) reads
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Hence, a decomposition of unity >, c; = 1, ¢; > 0,
defines the current j. Simplifications for special
choices of o;, v; and a detailed discussion of
existence and uniqueness of a solution, which is
supporting an implementation directly, will be in
the focus of the talk.

CONCLUSION

The Scharfetter-Gummel scheme is extended to
monotonous carrier density state equations in a
unified way.
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Fig. 1. Density in dependence of the chemical potential for

different state equations.
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Fig. 2. Diffusion enhancement factor for different state

equations, or: the generalized Einstein relation [7].
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Fig. 3. Current comparison for different state equations.

P8



