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ESSENTIAL GOALS OF THE DISCRETIZATION

Models for the carrier density n in semiconduc-
tors n = NcF(η), η chemical potential, include all
strictly monotonous distribution functions F(η) in
the range defined by Boltzmann-statistics (strongest
increase of density) and the Fermi-Dirac-integral of
order −1 (weakest increase of density), compare
Fig. 1. The latter one appears as vanishing disorder
limit of the Gauss-Fermi-integral [1] for hopping
transport in organic semiconductors and in phase-
separation models [2], where a ’discrete chain rule’
was used to get stability for the discrete problem.

Looking at analytic results for Fermi-Dirac-
statistics (e.g. [3]) and comparing them to those
for the Boltzmann case suggests, that it should
be possible to get all nice properties also for the
discrete problem in the F(η)-case: uniqueness for
small applied voltages; bounded, positive steady
states; existence of a unique transient solution;
dissipativity. Such results are expected to hold for
restricted classes of material models for all bound-
ary conforming Delaunay grids and all time steps.

The goal here is to generalize the Scharfetter-
Gummel-scheme for the above described range. Up
to now degenerate semiconductors may be most
precisely handled by a local, non-symmetric Boltz-
mann approximation and an outer iteration [4]. This
outer iteration multiplies the total computation time,
while a much more complex current relation may
triple the assembly effort only, a small fraction of
the total time.

A FIRST APPROXIMATION

In [5] the approximation introduced by Blake-
more [6] of the distribution function F1/2(η) for

small arguments

FB(η) =
1

e−η + γ
, 0 ≤ n ≤ Nc

γ
(1)

was investigated for the governing equation

d

dx

(
qµNcF(η(ϕ,ψ))

d

dx
ϕ(x)

)
= 0, (2)

describing a constant current j along an edge
[xa, xb] and the boundary values of the quasi-Fermi
potential ϕ(xa) = ϕa and ϕ(xb) = ϕb. This case is
sufficiently simple to obtain explicit expressions and
to study the essentials of the non-Boltzmann case,
namely the generalized Einstein relation, describing
the nonlinear ratio between diffusion coefficient and
mobility D/µ ∼ g3(n), see Fig. 2.

Using Eq. (2), changing variables from quasi-
Fermi potential to chemical potential together with
a linearity assumption of the electrostatic potential
ψ results in the following integral equation for j
along the edge∫ ηb

ηa

1
j
F(η) + δψ

dη = 1. (3)

Inserting the approximation FB(η) results in a fixed
point problem for the current [5]:

j = B(δψ + γj)eηb −B(−(δψ + γj))eηa , (4)

where B(x) = x
ex−1 is the Bernoulli function. Due

to the properties of the Bernoulli function this fixed
point problem has a unique solution for the current
and for all finite arguments. Solutions of Eq. (3) for
given potentials are shown in Fig. 3 together with
their Boltzmann counterparts.
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THE GENERAL CASE

The approach is generalized to any strictly mono-
tonous distribution function F(η), −∞ < η < ∞,
by using a piecewise continuous approximation of
the form

Fi(η) =
σi

e−η + γi
, ηi ≤ η ≤ ηi+1,

ηa = η0, ηb = ηk+1, σi > 0, γi > 0.

In this case the left hand side of equation (3) reads∫ ηb

ηa

dη
j
F(η) + δψ

=
k∑
i=0

ci, ci =

∫ ηi+1

ηi

dη
j
Fi(η)

+ δψ
.

Hence, a decomposition of unity
∑
i ci = 1, ci > 0,

defines the current j. Simplifications for special
choices of σi, γi and a detailed discussion of
existence and uniqueness of a solution, which is
supporting an implementation directly, will be in
the focus of the talk.

CONCLUSION

The Scharfetter-Gummel scheme is extended to
monotonous carrier density state equations in a
unified way.
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Fig. 1. Density in dependence of the chemical potential for
different state equations.

Fig. 2. Diffusion enhancement factor for different state
equations, or: the generalized Einstein relation [7].

Fig. 3. Current comparison for different state equations.


