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Since the tunnel current is very sensitive to
the tunneling distance, the barrier thickness vari-
ability is one of the concerns for integrating the
large number of tunnel junctions, e.g., in MRAM
[1]. In this study, we numerically investigate the
current distribution through metal-insulator-metal
diode structures considering the effect of tunnel bar-
rier roughness [2,3], and also discuss the analytical
formalism for describing its statistical properties [4]
depending on the various parameters.

Figure 1 shows the numerically generated rough-
ness pattern assuming the Gaussian spectral density.
We then cut out the samples as shown in Fig. 2, and
evaluated the average roughness height ⟨δ⟩ and the
average current density ⟨j⟩ over each sample area.
Figure 3 shows the probability distributions of ⟨δ⟩
plotted as a function of the sample area A. The
distributions follow a normal distribution, and the
variance σ2⟨δ⟩ decreases with A due to the statistical
averaging effect. Since the spacial correlation is
taken into account in the present roughness model,
σ2⟨δ⟩ becomes constant when A ≪ πΛ2 (where Λ
is the correlation length), while is inversely propor-
tional to A in the large area limit. As shown in
Fig. 4, we have approximated this behavior to the
analytical form:

σ2⟨δ⟩ = ∆2[1 +A/(πΛ)2]−1. (1)

Figure 5 shows the probability distributions of
⟨j⟩, exhibiting quite distorted form particularly in
the small area samples. Since the tunneling current
exponentially depends on the barrier thickness, it
is lognormally distributed if the thickness is nor-
mally distributed. However, with increasing A, the

distribution becomes narrower and symmetric in
accordance with the central limit theorem.

To analytically describe such behavior, Fenton-
Wilkinson approximation [5] was employed. This
assumes that when Xi (i = 1 . . . N) are dis-
tributed according to a lognormal distribution:
Xi ∼ LN(µ, σ2), then the sum distribution is well
approximated by another lognormal distribution:∑

iXi/N ∼ LN(µ̃, σ̃2), where

σ̃2 = ln

(
eσ

2

N
+ 1

)
, (2)

µ̃ = µ+
σ2 − σ̃2

2
, (3)

and µ and σ are the mean and the standard deviation
of Xi, respectively. Figure 6 shows the numeri-
cally simulated distributions of ⟨j⟩ together with
the results calculated with Eqs. (1)–(3). Note that
the analytical approach well describes not only the
area dependent peak positions, but also the tail
distributions, which are important information for
considering, e.g., the scaling limit of the magnetic
tunnel junctions used in MRAM.
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Fig. 1. Roughness pattern generated with a Gaussian spectral
density S(q) = π∆2Λ2 exp(−q2Λ2/4) (∆ = 0.1 nm, Λ = 6
nm). (a) Distribution of the roughness height δ(r) and (b) the
local current density j(r) are plotted.
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Fig. 2. Calculation method for the distribution of the tunneling
current through the samples. (a) The samples with an area of
A = L2 are cut out from the generated roughness pattern, and
(b) in each sample the average roughness height ⟨δ⟩ and the
average current density ⟨j⟩ are evaluated by discretizing the
sample area into small sections (≪ Λ2).
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Fig. 3. Probability distributions of the average roughness
height ⟨δ⟩ simulated for various sample area A.
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Fig. 4. Variance of ⟨δ⟩ plotted as a function of A. Dots
represent the numerical simulation results, which are well fitted
by the analytical form given in Eq. (1) (solid line).
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Fig. 5. Probability distributions of the average current density
⟨j⟩ simulated for various sample area A.
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Fig. 6. Probability distributions of ⟨j⟩ simulated for various
sample size L. Dots represent the numerical simulation results,
and the solid lines are the analytically calculated results.


