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Universal conductance fluctuations have been 
observed in mesoscopic semiconductors for 
decades [1].  These fluctuations arise from the 
presence of a random potential in the 
semiconductor, which arises from e.g. impurities 
present in the material.  The common theory 
suggests that the amplitude of these fluctuations 
will be a factor 2  smaller for magnetic field 
variation as compared to Fermi energy (or gate 
voltage) variation.  This arises from breaking of 
time reversal symmetry in the magnetic field and a 
reduction in the diffuson channel in the quantum 
conductance.  Within this small factor, it has been 
generally believed that a form of an “ergodic 
theorem” related the expected values for these two 
types of parameter sweep.  Recently, experimental 
work on graphene has raised questions about such 
a theorem [2]. It was found that sweeps of gate 
voltage led to fluctuations that were more than a 
factor of 3 higher than sweeps of magnetic field. 

Here, we explore Fermi sweep induced 
fluctuations versus magnetic field sweep induced 
fluctuations, to examine whether an ergodic 
theorem exists.  

We use a recursive scattering matrix 
formulation to solve for the quantum transport 
through our active region, which is projected onto 
a discrete lattice in two dimensions.  Here, the 
recursive approach follows that of Usuki [3] and 
our previous formulations.  The use of a discrete 
lattice imposes a cosinusoidal band onto the 
eigenvalues of the slice Hamiltonian, and that 
allows us to study both the normal parabolic band 
behaviour and a quasi-linear energy behaviour 
near the center of the energy band.  Thus, we can 
determine whether the observed effects in 
graphene [2] are unique to graphene or appear in 
any quasi-linear energy structure. 

We find a range of results depending upon the 
precise structure and the level of the random 
potential.  When a modest random potential is 
superimposed upon a weak quantum dot 
confinement, then we find for both parabolic and 
quasi-linear bands that the rms amplitude of the 
fluctuations is about 0.3 (in units of 2e2/h)  for 
Fermi energy sweeps and about 0.28 for magnetic 
field sweeps.  The former is close to the value of 
0.36 expected from diagrammatic Green’s function 
theory [1].  If the quantum dot is removed, the 
magnetic sweeps give smaller amplitude of order 
0.1.  If the amplitude of the random potential is 
increased to a large value, little change is seen in 
the Fermi energy sweeps (other than a reduction in 
overall conductance), but the fluctuations in the 
magnetic sweeps are reduced further to about 0.07. 

These results suggest that there is no universal 
relationship between the two types of sweep, 
particularly no 2  connection, as the ratio of the 
amplitudes for the two sweeps can be found to 
vary from near 1 to more than 4.  This further 
suggests that the observations in graphene [2]  may 
be as much due to very strong disorder as to the 
uniqueness of the graphene energy structure. 

 
 [1] See, e.g., D. K. Ferry, S. M. Goodnick, and J. P. Bird, 

Transport in Nanostructures, 2nd Ed. (Cambridge Univ. 
Press, Cambridge, 2009) Ch. 7. 

[2] G. Bohra, R. Somphonsane, N. Aoki, Y. Ochiai, R. Akis, 
D. K. Ferry, and J. P. Bird, “Nonergodicity and 
microscopic symmetry breaking of the conductance 
fluctuations in disordered mesoscopic graphene,” Phys. 
Rev. B 86, 405(R) (2012). 

[3] T. Usuki, M. Saito, M. Takatsu, R. A. Kiehl, and N. 
Yokoyama, “Numerical analysis of ballistic-electron 
transport in magnetic fields by using a quantum point 
contact and a quantum wire,” Phys. Rev. B 52, 8244 
(1995). 



151

P4

 
Fig. 1.  Fluctuations for Fermi sweep in the parabolic regime.  

A small, soft walled quantum dot is also present. 

 
Fig. 3.  Fluctuations for Fermi sweep in the quasi-linear 

regime.  A small, soft walled quantum dot is also present. 

 
Fig. 2.  Fluctuations for Fermi sweep in the parabolic regime, 

with no quantum dot potential, but with strong scattering. 

 
Fig. 2.  Fluctuations for magnetic field sweep in the parabolic 

regime.  A small, soft walled quantum dot is also present.  

The Fermi energy is 10 meV. 

 
Fig. 5.  Fluctuations for magnetic field sweep in the quasi-

linear regime.  A small, soft walled quantum dot is also 

present.  The Fermi energy is 43 meV. 

 

Fig. 5.  Fluctuations for magnetic field sweep in quasi-linear 

regime for strong scattering. The Fermi energy is 58 meV 

-1

-0.5

0

0.5

1

0.006 0.008 0.01 0.012 0.014

Plot of Conductance vs Fermi Energy

D

D
el

ta
 C

on
du

ct
an

ce
 (U

ni
t :

 2
e2 /h

)

Fermi Energy ( Unit : eV)

-1

-0.5

0

0.5

1

0.034 0.036 0.038 0.04 0.042 0.044 0.046

Plot of Conductance vs Fermi Energy

D

D
el

ta
 C

on
du

ct
an

ce
 (U

ni
t :

 2
e2 /h

)

Fermi Energy ( Unit : eV)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.005 0.01 0.015

(δ
G

) rm
s (2

e2 /h
)

E
F
 (eV)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

Conductance vs the magnetic field intensity in quantum dot 
with Fermi Energy=10meV under random potential <0.5

D

de
lta

  C
on

du
ct

an
ce

 (U
ni

t :
 2

e2 /h
)

Magnetic field intensity ( Unit : Tesla )

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8

Conductance vs the magnetic field intensity in quantum dot 
with Fermi Energy=43 meV under random potential <0.5

D

D
el

ta
 C

on
du

ct
an

ce
 (U

ni
t :

 2
e2 /h

)

Magnetic field intensity ( Unit : Tesla )

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(δ
G
) rm

s (2
e2 /h

)

B(T)


