Optical Absorption in InAs/In_{0.48}Ga_{0.52}P Quantum Dot Superlattices

H. Yoshikawa, T. Kotani, Y. Kuzumoto, M. Izumi, Y. Tomomura, and C. Hamaguchi Advanced Technology Research Laboratories, Sharp Corporation, 2613-1 Ichinomoto-cho, Tenri, Nara 632-8567, Japan e-mail: yoshikawa-hirofumi@sharp.co.jp

INTRODUCTION

Recently, semiconductor quantum dot (QD) array-based intermediate band solar cells (IBSCs) have received much attention as ultrahigh efficiency solar cells[1]. The concept of IBSCs is to increase the photocurrent by the additional twostep photon-absorption via the intermediate band (IB or QD minibands) states as illustrated in Fig. 1. Although InAs/GaAs IBSCs are widely studied, the optical properties are not suitable for solar spectra, because the wavelength of absorbed light from IB (MB₀: first miniband) to the conduction band is too long. Instead we propose solar cells based on InAs/In_{0.48}Ga_{0.52}P which provides higher efficiency of sunlight absorption. In_{0.48}Ga_{0.52}P is lattice-matched material to GaAs with wider bandgap than GaAs. We present theoretical calculations of the absorption spectra of InAs/In_{0.48}Ga_{0.52}P IBSCs.

CALCULATION METHOD

We consider z-stacked InAs/In_{0.48}Ga_{0.52}P QD superlattices (QDSLs) with a pyramidal shape. The dot height is 3 nm, and the base length is 8 nm. The inter-dot spacing in z-direction is 3 nm. We calculated the electronic and optical properties by solving the plane-wave expanded 8-band k p Hamiltonian [2], [3] with periodic boundary condition. We also took into account of strain and piezoelectric effects. The electronic and optical properties of InAs/In_{0.48}Ga_{0.52}P QDSLs are also compared with those of conventional InAs/GaAs QDSLs. For the valence band (VB) to IB (MB_0) or CB transitions (VB \rightarrow IB or VB \rightarrow CB), we assume the VB subbands are completely filled with electrons and the IB and CB subbands are empty. For the IB \rightarrow CB transitions, we assume

the IB is completely filled and the CB subbands are empty.

RESULT AND DISCUSSION

Figs. 2 (a)–(d) show the TE (x- and y- direction) and TM (z-direction) polarized absorption spectra of InAs/GaAs QDSLs and InAs/In_{0.48}Ga_{0.52}P QDSLs, where we find the absorption spectra of InAs/In_{0.48}Ga_{0.52}P **QDSLs** are blue-shifted compared to InAs/GaAs QDSLs. In addition, the absorption band of InAs/In_{0.48}Ga_{0.52}P QDSLs is narrowed compared to InAs/GaAs QDSLs. These results indicate InAs/In_{0.48}Ga_{0.52}P QDSLs have the strong quantum confinement effect due to the large conduction band offset, and thus the IB width become narrower. In the IB \rightarrow CB transitions for the TE polarization, the peaks due to the transition between IB (MB₀) and MB₁, MB₂ become narrower. This result is not only due to the narrower IB width but also due to the change of MB_1 and MB_2 from the continuum states to the localized states below the effective potential barrier.

CONCLUSION

We find that the IB \rightarrow CB transition energy gap can be widened by changing a barrier material from GaAs to lattice-matched In_{0.48}Ga_{0.52}P. This suggests that In_{0.48}Ga_{0.52}P is a good candidate for a barrier material of ultrahigh efficiency IBSCs.

REFERENCES

- K. Tanabe, et al., High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition, Appl. Phys. Lett. 100, 193905 (2012).
- [2] C. Hamaguchi, Basic Semiconductor Physics, 2nd. ed, Springer-Verlag, (2010).
- [3] S. Tomić, Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays, Phys. Rev. B 82, 195321 (2010).

Fig. 1. Schematic view of the VB \rightarrow IB (MB₀), VB \rightarrow CB, and IB (MB₀) \rightarrow CB transitions.

Fig. 2. The absorption spectra of InAs/GaAs QDSLs (dashed line) and InAs/In_{0.48}Ga_{0.52}P QDSLs (solid line) (a) TE polarized in the VB \rightarrow IB (MB₀) and VB \rightarrow CB transitions, (b) TM polarized in the VB \rightarrow IB (MB₀) and VB \rightarrow CB transitions, (c) TE polarized in the IB (MB₀) \rightarrow CB transitions, and (d) TM polarized in the IB (MB₀) \rightarrow CB transitions.