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ABSTRACT

To study the self-heating effects, we have
developed a new efficient tool that solves self-
consistently the Boltzmann transport equation
(BTE) for both electrons and phonons. A Monte
Carlo solver for electrons is coupled with a direct
solver for the phonon transport (pBTE). In this
work, this simulator is used to investigate the self-
heating in a 20 nm-long double gate MOSFET.

For electrons, the Monte Carlo model used is a
semi-classical ensemble simulator self-consistently
coupled with a 2-D Poisson solver. All details of
the analytic band structure and the scattering
parameters may be found in [1,2]. This approach
evaluates very accurately the phonon emission and
absorption spectra in both real and energy space.

In the relaxation time approximation, for each
phonon polarization s (i.e. LA, TA, LO, TO), the
BTE for phonons can be expressed as
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where vg is the group velocity, Ns(T',q ) is the
particle number, T is the position and G(F,q ) is
the phonon generation term provided by the
electron transport solution. Ngtrourier 1S the
equilibrium phonon number at temperature Teourier
where Trourier 1S the temperature obtained by
solving the heat equation. z is the total relaxation
time computed via the Mathiessen’s rule including
three-phonon, phonon-impurity [3] and phonon-
boundary scattering [4] mechanisms. The optical
decay into acoustic phonon modes is considered too
[5]. An analytical parabolic dispersion was used
for phonons [6]. An out-of-equilibrium effective
temperature Te is derived from the local phonon
energy density, and is reinjected in the electron

MC simulator via the update of electron-phonon
scattering rates. The loop is repeated until a
convergence is reached.

Fig. 1 shows the simulated Silicon-based DG-
MOSFET with film thickness of 20 nm. In Fig. 2
the potential profiles along the device reveal the
presence of high electric field at the drain-end of
the channel, where, under high drain bias, hot
electrons can emit many high-energy phonons, as
shown in Fig. 3. In Fig. 4 the profile of effective
temperature is plotted for different numbers of
loops. We observe that the temperature evolves
significantly between the 1% loop and the 2™ loop.
However, after the 3™ loop the convergence is
reached. Finally, the temperature in the channel
reaches 430 K, which has an impact on the
electron transport in the channel. For instance,
Fig. 6 shows that the fraction By, of electrons that
cross the channel ballistically [1] is reduced when
taking the self-heating effect into account. This
leads to a significant reduction of current, as
shown in Fig.7. In this device, the reduction
reaches 16% for Vps = 1.5 V.

Our new self-consistent electron-phonon
Finally, BTE solver provides very detailed insight
into electro-thermal effect at the nano-scale.
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Fig. 1. Simulated Double-Gate MOSFET.
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Fig. 2. Potential profile (bottom of conduction band) for
various Vps at Vg = 0.5 V (isotherrmal simulations).
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Fig. 3. Energy spectrum of generated phonons along the
device atVg=0.5V and Vps =15 V.
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Fig. 4. Profile of effective temperature T along the device
obtained at a given bias point after different loop numbers.
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Fig. 5. Intrinsic ballisticity as a function of Vps for Vs=0.5V.
Isothermal-open loop (dashed line) and self-consistent
simulation (continuous line).
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Fig. 6. 1p-Vps characteristics for Vg= 0.5V for different
numbers of loops of electron and phonon transport
simulation.
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