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STATE OF THE ART AND MOTIVATION

Several software packages exist that are con-
cerned with some aspects of quantum-electronic
computation. Codes began to appear in the late
nineties as one-dimensional Schrödinger-Poisson
solvers. Since then we have seen the development of
academic codes such as nextnano3 [1], NEMO 5 [2],
tiberCAD [3], and tdkp/AQUA [4]. These feature
accurate modeling of materials through advanced
band structure models, and are able to include
effects of strain or magnetic fields in the calculation.

Some of these tools are in fact a collection of
specialized models tailored to specific tasks and
offer little flexibility. Others demand considerable
experience in semiconductor physics from the user
to operate them properly.

In our work we are seeking to bridge this gap
and provide a flexible, highly efficient simulation
enviroment for quantum-electronic problems – the
Vienna Schrödinger-Poisson framework (VSP) [5].
The framework is aimed at engineers, students with
basic knowledge, and the experienced user.

METHODS

A number of methods have been developed and
adopted for the VSP. At the core of VSP lies
a loop that solves the Poisson equation together
with a carrier model self-consistently. Different car-
rier models can be picked: a classical equilibrium
distribution, a system of quantized carriers using
the parabolic band approximation, or a k · p band
structure model with an arbitrary number of bands.
A unified interface has been developed that allows
the user to specifiy any kind of k · p Hamiltonian up
to second order in k. Arbitrary crystal orientations
are possible. Strain and magnetic fields can be
included.

Discretization of both real space and k-space
is based on a finite volume scheme described in
[6], that accurately treats anisotropy, which is im-
portant when discretizing k · p Hamiltonians. The
discretization is independent of the problem di-
mensionality and each model code works for one,
two, and three dimensions. This ensures consistency
when comparing problems of different dimension-
ality. As default, VSP automatically picks the most
suitable numerical methods for the problem at hand.

On the numerical side, VSP employs established
libraries for solving linear, nonlinear and eigenvalue
problems. These are combined with methods that
enhance the numerical preformance especially for
eigenvalue problems, such as the shift-invert tech-
nique or subspace deflation. Scalable parallelization
is provided, making the VSP a highly efficient tool.

RESULTS

Figures 1 through 5 show three different devices
analyzed using VSP: a p-type MOS capacitor, a p-
type FinFET and a STM tip on an lightly p-doped
Si substrate covered by a SiO2 layer. The simulator
was set up to obtain the carrier concentration self-
consistently with the Poisson equation. The same
simulation setup was used for all three devices –
only the geometry changed. Three different carrier
models were used: (I) classical unconfined carriers,
(II) quantum-confined carriers in the parabolic band
approximation, and (III) confined carriers with a
k · p band structure for electrons modeled according
to [7] and for holes according to [8] and [9].
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Fig. 1. CV-curve of a p-type MOS capacitor; classical,
parabolic band quantum, and k · p quantum models are com-
pared; a difference between the effective mass and k · p is
visible in inversion due to the higher non-parabolicity of the
valence band.

(a)

(b)

Fig. 2. Contour plots of the lowest three subbands in the p-
type MOS capacitor calculated using a k · p band structure at
inversion VG = −2V (a) and accumulation VG = 2V (b)
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Fig. 3. CV-curve of a p-type FinFET; classical, effective mass
quantum, and k · p quantum models are compared; here too,
the quantum and k · p curves differ at inversion.

Fig. 4. Hole distribution in the FinFET at inversion VG =
−1V; left: parabolic band approximation, right: k · p band
structure

Fig. 5. Electron concentration under a STM tip biased at 4V;
left: parabolic band approximation, right: k · p band structure


