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Is there a mesoscopic Braess paradox?
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INTRODUCTION

In a recent paper Pala et al. present an experi-
ment and a numerical simulation of an interesting
phenomenon that is interpreted as a mesoscopic
analogous of the Braess paradox. They consider the
structure reported in Fig. 1 and observe that, in
“congestion” conditions (i.e., if the total number of
modes propagating in the parallel channels is less
than that in the leads), addition of the channel in the
middle may, somewhat counterintuitively, lead to a
decrease in conductance instead of an increase. This
effect is interpreted with reference to the Braess
paradox [2] in transportation theory, in which open-
ing a new path in a particular road network used by
noncooperative players may lengthen the average
travel time between two locations.

Here we perform an analysis showing that this
situation is actually a particular case of destructive
quantum interference. In other words, addition of
the third channel leads to suppression of transmis-
sion for some of the modes in the vertical channels,
due to a “stub” effect (see, e.g. Ref. [3]), and this
suppression prevails over the conductance increase
due to the additional channel.

MODEL AND RESULTS

We consider the same material parameters (for In-
GaAs) and device geometry as in Ref. [1], and use a
recursive Green’s function approach [3] to compute
the trasmission matrix, from which conductance is
obtained via the Büttiker-Landauer formalism.

Let us first analyze the dependence of conduc-
tance through the structure as a function of the
position of the exit lead: results are reported in
Fig. 2 for the case of only two channels (solid line),
adding a third channel in the middle (dashed line),
and with a third channel shifted 500 nm away from
the center (dotted line). We immediately notice that
the paradoxical behavior is observed only when the
entrance and exit lead are on opposite sides with

respect to the third channel (otherwise the addition
of the third channel leads to an increase of the
conductance)

We observe that the third channel not only acts as
an additional conducting path, but also as a “stub”
for the vertical channels to which it is connected,
thereby letting only part of the propagating modes
pass without being attenuated. If the third channel
is between the leads, such an attenuation will occur
along both paths: the clockwise [Fig. 3(a)] and
the counterclockwise one [Fig. 3(b)], otherwise the
attenuation will affect only one [Fig. 3(d)] of the
paths (although connected in two locations, the
same modes will be affected). Thus, in the former
case the attenuation prevails over the increase in
conductance resulting from the new open path,
while in the latter case the reverse happens.

To confirm this interpretation, we have performed
a simulation adding a third channel with a barrier in
the middle: in this way we still have a stub action
leading to the conductance decrease, but there is
no new path for conduction. In Fig. 4 we plot the
overall conductance as a function of the position
of the exit lead in the absence of the third channel
(solid line), and in the presence of the third channel
obstructed with a 20 nm thick and 0.1 eV high
barrier (the Fermi energy is 60 meV) placed in the
middle. It is apparent that conductance is suppressed
more than when the third channel is unobstructed,
although there is no new open path.

REFERENCES

[1] M. G. Pala, S. Baltazar, P. Liu, H. Sellier, B. Hackens, F.
Martins, V. Bayot, X. Wallart, L. Desplanque, S. Huant,
Transport inefficiency in Branched-Out Mesoscopic Net-

works: an Analog of the Braess Paradox, Phys. Rev. Lett.
108, 076802 (2012).

[2] D. Braess, A. Nagurney, T. Wakolbinger, On a Paradox of

Traffic Planning, Transportation Science 39, 446 (2005).
[3] F. Sols, M. Macucci, U. Ravaioli, Karl Hess, Theory for

a quantum modulated transistor, J. Appl. Phys. 66, 3892
(1989).



127

I6

300 nm

300 nm

200 nm

1000 nm

100 nm

300 nm

300 nm

400 nm

400 nm

650 nm

650 nm

200 nm

1100 nm

100 nm

100 nm

Fig. 1. Sketch of the considered structure
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Fig. 2. Conductance as a function of the position of the center
of the exit lead (measured from the bottom): for 2 channels
(solid line), with the addition of the third channel in the middle
(dashed line), and with the addition of the third channel shifted
down by 500 nm (dotted line).
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Fig. 3. Possible paths in the case of leads on opposite sides
(a,b) and of leads on the same side (c,d) with respect to the
third channel.
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Fig. 4. Conductance as a function of the position of the exit
lead for 2 channels (solid line) and for 3 channels (dashed line),
but with an opaque barrier in the middle of the third channel.
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Fig. 5. Conductance as a function of the height of the barrier
in the middle of the third channel, for the lead configuration of
Fig. 1; the dashed line represents the conductance for the case
of only 2 channels.


