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The quantum dissipative dynamics of a 

tunneling process through double barrier structures 

is investigated on the basis of a rigorous treatment 

for the first time. We employ a Caldeira-Leggett 

Hamiltonian 
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with an effective potential calculated self-

consistently, accounting for the electron 

distribution. The heat bath can be characterized by 

the spectral distribution function, defined by 
2 2 2( ) / ( )J m       ,where   is the 

reciprocal of the correlation time of the noise 

induced by phonons and   is the electron-

phonon coupling strengt. With this Hamiltonian,  

we employ reduced hierarchy equations of 

motion (HEOM) approach, which can deal 

with non-Markovian and non-perturbative 

system-bath interactions at finite temperature 

1/ kT   without  approximation [1,2]. In the 

Wigner form the HEOM is expressed as [2-4] 
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In the HEOM, the reduced density operator is 

expressed in the auxiliary hierarchy density 

matrix elements 
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 , where the 

index n  and kj  arises from the hierarchal 

expansion of noise correlation time and the kth 

Matsubara frequency 2 /k k    and L̂  is 

quantum Liouvillian (time scale 1/ c ). 

Other operatorswith (
2 2 22 / ( )k kc     ) are 
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Hysteresis and both single and double 

plateau-like behavior are observed in the negative 

differential resistance (NDR) region. We find two 

distinct types of current oscillations, with large and 

small oscillation amplitudes, respectively, in some 

parts of the plateau in the NDR region. The results 

of eigenstates analysis indicate that the first type is 

caused by a transition between ground tunneling 

states and adjacent excited states in the emitter 

basin, while the second type is caused by a 

transition between intermediate tunneling states 

and higher states. These two types of oscillation 

also appear differently in the Wigner space, with 

one exhibiting two piston engine-like motion and 

the other exhibiting tornado-like motion (Figs.4-5). 
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Fig. 1.  The I-V characteristics and steady current. 

 

 

Fig. 2. The I-V characteristics for different contact region size. 

 

 

Fig. 3.  The spectral distributions and the effective potential 

for the large (red) and small (green) oscillations in fig.2 (b). 

 
 

 

 

 

 

 

 

 

Fig.4. The snapshots of the Wigner distribution for small 

oscillation case(green curve) at the times marked in Fig.2(ii-b). 

 

Fig.5. The snapshots of the Wigner distribution for large 

oscillation case (red curves) at the times marked in Fig.2(iii-b). 


