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With the advent of smaller nanoelectronic de-
vices, where quantum mechanics is central to the
device operation, quantum mechanical simulations
have become a necessity. The non-equilibrium
Green’s function (NEGF) method [1] has emerged
as a powerful modeling approach for these nanode-
vices and nanomaterials.

A typical NEGF-based simulation solves the
Green’s function equations,{

A (E)Gr (E) = I

A (E)G< (E) = Σ< (Gr (E))†
(1)

where the sparse matrix A is defined by

A = EI−H−ΣLead −ΣPhonon. (2)

Gr(E) is the retarded Green’s function, describing
local density of states, and (Gr(E))† its Hermi-
tian conjugate. G<(E), the lesser Green’s func-
tion, represents the electron correlation function for
energy level E; the diagonal elements of G<(E)
represent the electron density per unit energy. I is
the identity matrix and H the system Hamiltonian.
ΣLead represents the self-energy matrix due to the
leads and ΣPhonon corresponds to the self-energy
governing electron-phonon scattering. The matrix
Σ< corresponds to the lesser self-energy. Solving
(1) for the diagonal of G< at many energies E
is a computationally intensive part of NEGF-based
simulations.

The most common approach to compute blocks
of Gr and G< is the recursive Green’s function
method [4]. Recent advances utilize the nested
dissection method [2] to exhibit a significant
speedup. These new algorithms exploit a sparse

block LDLT -factorization of A and re-use this
factorization to fill in all diagonal blocks of the
Green’s functions in a specific order. The main
difference between RGF and these methods is the
replacement of layers of grid points organized along
a specific direction with arbitrarily-shaped clusters
of grid points organized in a binary tree. Such
choice allows to fold and to extract in any physical
direction when following the binary tree, generated
by the nested dissection.

The present contribution introduces an algorithm
for calculating diagonal blocks of G< with parti-
tions from METIS [3]. The developed method has
a reduced complexity compared to the established
recursive Green’s function approach. For a device
with Ny layers and Nx grid points per layer, as
shown in Figure 1, the complexity for RGF is
O(N3

xNy) while the proposed algorithm exhibits a
complexity O(N2

xNy). Numerical experiments on a
quantum well superlattice and a carbon nanotube
demonstrate significant speedups over the recursive
method.
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Fig. 1. Nano-device partitioned into Ny layers. Each layer
contains Nx grid points.

Fig. 2. Partition generating the RGF algorithm.. The first pass
advances one layer at a time from left to right along the y-
direction and, recursively, folds the effect of left layers into the
current layer. The second pass marches one layer at a time from
right to left along the y-direction and, recursively, extracts the
diagonal blocks and the nearest neighbor off-diagonal blocks
for the final result.

Fig. 3. Partition generated by METIS for system including
dense layers at two ends.

Fig. 4. Binary tree relating the different clusters of grid points.
The first pass folds all clusters of grid points on the same level,
while climbing up. The second pass extracts the diagonal blocks
one level at a time, while marching down.

Fig. 5. Typical distribution of computed elements for Gr and
G<.

Fig. 6. Comparison of number of operations between our
algorithm (blue) and RGF (red).


