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INTRODUCTION

A well-known method to solve a differential
problem, and in particular a Schrodinger or Dirac
transport equation, with periodic boundary condi-
tions, is based on substituting each of the functions
appearing in the differential system with its Fourier
transform and solving the problem in terms of the
Fourier coefficients of the unknown functions. A
proper frequency cut-off has to be chosen to limit
the size of the problem.

This approach is generally preferable to a di-
rect real-space solution based on a finite-difference
discretization scheme, since it avoids the errors
related to the discretization of the derivatives. It
can thus be shown that the precision of a solution
found with the Fourier-space approach considering
only N frequencies is generally better than that
of a solution obtained with the direct-space finite-
difference approach considering a grid of N points.

Here we discuss the possibility to obtain, working
in the direct space, a method equivalent to that used
in the reciprocal-space domain, and thus the same
accuracy, using a particular set of basis functions in
the solution of the problem.

METHOD AND RESULTS

The method is based on the use in the direct
space of the following sampling functions for the
quantities periodic with period L = NA (where A
is the size of the considered direct-space mesh and
N is the number of samples in the period):
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(where sinc(x) = sin(7x)/(7z)). In Fig. 1 we show

an example of these basis functions for N = 20 and

¢ = 10: it is clearly periodic with the same period
L as the functions we are expanding.

In detail, assuming band-limited wave functions
and potentials, we express them in terms of sinc
functions using the sampling theorem and then, after
some analytical elaborations, we find the correct
expressions for all of the terms appearing in the
transport equations, in the form of g,(z) function
expansions. This allows us to obtain a direct space
approach equivalent to that in the Fourier space and
thus with the same accuracy properties.

As an example, we apply this method to solve the
Dirac transport equation in an armchair graphene
nanoribbon with the potential varying only in the
transverse direction, which (as we have shown
in [1], [2]) can be recast into a form with pe-
riodic boundary conditions. In particular, for the
two transversal potentials represented in Fig. 2, we
obtain the longitudinal wave vectors represented on
the Gauss plane in Figs. 3 and 5, and, for the
longitudinal wave vector with largest real part, the
transverse envelope functions shown in Figs. 4 and
6. These results coincide with those obtained with
the Fourier-space approach [1], [2] using a number
of frequencies identical to the number of samples
considered within the period in the direct-space
domain.
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Fig. 1. Sinc basis function for N = 20 and ¢ = 10 (three

periods have been represented).
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Fig. 2. The two transverse potentials for which the longitudinal
wave vectors and transverse envelope functions of a 1 ym wide
armchair nanoribbon have been computed using the sinc-based
approach.
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Fig. 3. Longitudinal wave vectors, represented on the Gauss
plane, for the armchair nanoribbon in the presence of the
potential of case 1 of Fig. 2.

27

0.04
©
o L i
i)
g& 003f ]
c
° £ i ]
S
= ¢ 002} R
[SEet
g8 I |
S 3 0.01¢ g
]
<} i ]
=
0 | | L |
0 200 400 600 800 1000
Transversal position (nm)
Fig. 4. Modulus of a transverse envelope function (corre-

sponding to the longitudinal wave vector with largest real part)
for the armchair nanoribbon in the presence of the potential of
case 1 of Fig. 2.
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Fig. 5. Longitudinal wave vectors, represented on the Gauss

plane, for the armchair nanoribbon in the presence of the
potential of case 2 of Fig. 2.
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Fig. 6. Modulus of a transverse envelope function (corre-

sponding to the longitudinal wave vector with largest real part)
for the armchair nanoribbon in the presence of the potential of
case 2 of Fig. 2.
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