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INTRODUCTION

In thermodynamics and statistical mechanics en-
tropy is the fundamental physical quantity to de-
scribe the evolution of a statistical ensemble. Its
microscopic definition was provided by Boltzmann
through the celebrated expression S = kB ln Γ,
where kB is the Boltzmann constant and Γ is the
number of microstates exploiting the given macro-
scopic properties. In this context, it is well known
that in classical mechanics the entropy: i) allows
the violation of the uncertainty principle [1], [2]; ii)
can be considered as a special case of the so-called
Boltzmann-Gibbs-Shannon entropy that enables one
to apply results of information theory to physics [1],
[3]. In particular, by introducing the principle of
maximum entropy (MEP) it was found possible to
derive rigorous hydrodynamic (HD) models based
on the moments of the distribution function to all or-
ders of a power expansion and including appropriate
closure conditions [4], [5]. Accordingly, making use
of the Lagrange multipliers technique, it was found
possible to construct the set of evolution equations
for the macro-variables of interest.

Apart from some partial attempts [3], [6], this
is no longer the case in quantum mechanics. Here,
the main difficulties concern with: i) the defini-
tion of a proper quantum entropy that includes
particle indistinguishability; ii) the formulation of
a global quantum MEP (QMEP) that allows one
to obtain a quantum distribution function both
for thermodynamic equilibrium and nonequilibrium
configurations. From one hand, in the framework
of a nonlocal quantum theory, the generalization

of the corresponding Lagrange multipliers is also
an open problem. Fron another hand, a rigorous
formulation of quantum HD (QHD) closed models
is a demanding issue for many kinds of problems
in quantum systems like, interacting fermionic and
bosonic gases, quantum turbulence, quantum fluids,
quantized vortices, nuclear physics, confined carrier
transport in semiconductor heterostrucures, phonon
and electron transport in nanostructures, nanowires
and thin layers.

The aim of this talk is to address the above
drawbacks by defining a quantum entropy in terms
of the reduced density matrix, thus explicitly incor-
porating quantum statistics into problems involving
a system of identical particles. As a further step,
with respect to the uncertainty principle, starting
from the Wigner representation we formulate a
quantum maximum entropy principle which, in the
framework of information theory, allows us to ob-
tain a non-local theory for the system under study.
As a final step, we determine a closed quantum
hydrodynamic model for the macroscopic variables
used as constraints in the QMEP approach.

THE NONLOCAL QMEP

By considering the Wigner formalism [7], the
QMEP was asserted as the fundamental principle
of quantum statistical mechanics when it becomes
necessary to treat systems in partially specified
quantum mechanical states [8]. Recently, in a series
of papers [5], [8], [9] we have presented a set
of results addressing this problem by emphasiz-
ing the role played by a proper formulation of
a QMEP to close quantum hydrodynamic models
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in the framework of Extended Thermodynamics.
Here, we present a rigorous nonlocal formulation of
QMEP by including explicitly Fermi statistics, Bose
statistics and, more generally, fractional exclusion
statistics (FES).

Relevant results of the present investigation are:
(i) The development of a generalized quantum ki-
netic equation, in the mean field approximation, for
the reduced Wigner function.
(ii) The construction of Extended Quantum Hydro-
dynamic models evaluated exactly to all orders of h̄.
(iii) The definition of a generalized quantum entropy
as global functional of the reduced density matrix.
(iv) The formulation of a quantum version of the
maximum entropy principle obtained by determin-
ing an explicit functional form of the reduced den-
sity operator, which requires the consistent intro-
duction of nonlocal quantum Lagrange multipliers
within a Moyal expansion.
(v) The development of a quantum-closure proce-
dure that, for a set of relevant quantum regimes,
includes nonlocal statistical effects in the cor-
responding quantum hydrodynamic systems, both
in thermodynamic equilibrium and nonequilibrium
conditions.
(vi) The extension of QMEP in the framework of
FES.
In particular, within point (vi) the anionic systems
satisfying FES [9] are proven to generalize all the
results available in the literature in terms of both the
kind of statistics and the nonlocal description for ex-
cluson gases. Finally gradient quantum corrections
are explicitly given at different levels of degeneracy,
and classical results are recovered when h̄ → 0.

We remark, that for many years the nonlocal
gradient corrections have been extensively tested in
real applications such as atomic, surface, nuclear
physics, and electronic properties of clusters [10].
Analogously, density gradient expansions have been
used to describe capture confinement and tunnelling
processes for devices in the deca-nanometer regime
by showing a very good agreement both with avail-
able experiments and other microscopic methods
[11]. We conclude, that the novelty of the present
approach allows one to describe the Wigner gradient
expansions in the framework of quantum statistics
by including also gradient thermal corrections and
vorticity terms. As a consequence, the major results

outlined above can have relevant applications in
quantum turbulence, quantum fluids and quantized
vortices. Accordingly, the QMEP including FES
is here asserted as the most advanced formulation
of the fundamental principle of quantum statistical
mechanics.
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