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Abstract—We present an extended hydrodynamic model approximation for the collisional operator [3], whereas
describing the transport of electrons in the axial directim the full solution of the MBTE can be obtained or by
of a.silicon nanowire. This mode_l has been formulated by using the Monte Carlo (MC) method [4]-[7] or by
closing the moment system derived from the Boltzmann sing deterministic numerical solvers [8],[9] at expense
equations on the basis of the maximum entropy principle of of huge computational times. Another alternative is

Extended Thermodynamics, coupled to the Effective Mass . .
and Poisson equations. Explicit closure relations for the to obtain from the MBTE hydrodynamic models that

high-order fluxes and the production terms are obtained @€ & good engineering-oriented approach. This can be
without any fitting procedure, including scattering of achieved by taking moments of the MBTE, and by
electrons with acoustic and non polar optical phonons. closing the obtained hierarchy of balance equations as
By using this model, thermoelectric effects have been well as modeling the production terms (i.e. the moments
investigated. on the collisional operator).

. INTRODUCTION

By shrinking the dimension of electronic devices, [I. THE EXTENDED HYDRODYNAMIC MODEL
effects of quantum confinement are observed Under
reasonable hypotheses, transport in low-dimension semi-

duct be tackled usi iclassical tool For a SINW with linear extension along the z-
conauctors (_:an € tackied using semic assma_ 00_ ?"dﬁlection, the MBTE for the electron distribution func-
fact, the main quantum transport phenomena in Silic

(ﬁréns k.,t) in eacha-th subband writes [2
Nanowires (SiNW) transistors at room temperature, suc Jal(z,kz,1) « [2]

as the source-to-drain tunneling, and the conductance
fI_uct_u_atlon induced by the quantum interference, becorfida + vz(kz)% _ ¢ gz% — chn[fm far] (1)
significant only when the channel lengths are smalle?t 9z h "0k, =4
than 10nm [1]. Therefore, for longer channels, semi-
classical formulations basgd on the 1-D mgltlsupbare,v%ere £, is the electric fieldv, — 12E= the elec-
Boltzmann Transport Equation (MBTE) can give re“abIFron loci ho9z 7

. . o . group velocity,E,, the total energy, which, in the
simulation results when it is solved self-con&stentlegalrabolic band approximation, writes
with the 3-D Poisson and 2-D Sdidinger equations in ’
order to obtain the self-consistent potential and subband
energies and wavefunctions [2]. Another simplification
comes from the use of the Effective Mass Approximation
(EMA), which is supposed to be still a good solution
in the confining direction in the presence of disordewhereFE. is the conduction band edge energy, apdhe
which is probably valid for semiconductor nanowirekinetic energy associated with the confinement. All the
down to 5 nm in diameter, below which atomistic eleaelevant 1D scattering mechanisms in Si, i.e. acoustic
tronic structure models need to be employed. Solvinonon scattering and nonpolar phonon scattering, are
the MBTE numerically is not an easy task, becausetiken into account by the collisional integ@J[f., fo'].
forms an integro-differential system in two dimension$his transport equation must be coupled to the EMA-
in the phase-space and one in time, with a complicd®isson system. By multiplying the MBTE by the weight
collisional operator. A considerable simplification of théunctionsy 4 = {1,v,,¢,,v.¢.}, and integrating in the
MBTE can be obtained employing the relaxation timg, space, one obtains the following hydrodynamic-like
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in the unknowns (called momentgf* (1-D density),
Ve (mean velocity), W® (mean energy) and® (mean

energy-flux), and
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This system of PDEs is of hyperbolic type.

. CLOSURERELATIONS

The above moment system is not closed: there af
more unknowns than equations. The maximum entropy
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where the quantitie$\®, A%, A\, A¢) are known func-
tions of the momentgp®, Ve, W<, S%}. By using the
distribution function (4), the higher-order flux term
6(wa)2

m*

Fo=

as well as the production terng&® , C3*', Cjy’, Cg
have been determined. We underline that this extended
hydrodynamic model has been closed by using first
principles, and it is free of any fitting parameters.

IV. LOCAL THERMAL EQUILIBRIUM

When the electric field is small, the system formed
by the electrons and phonons is in Local Thermal
Equilibrium (hereafter LTE). In this case, we assume
that the system under study can be split into a series
of sub-systems sulfficiently large to allow them to be
treated as macroscopic thermodynamic subsystems, but
sufficiently small that equilibrium is very close to being
realized in each sub-system. In our scheme, this regime
will be characterized by setting the smallness parameter
7 =0 and, in such a case, the eq.(4) reduces to the local
maxwellian. In this regime, Gibbs relations hold for each
sub-system, i.e.

TedS® = d(p® W) — v%dp® , TndSp =dWy (5)

whereT}* is the electron temperature} is the chemical
potential for the electrons with respect to the energy of
the a-th subband [20] 1%, S;,, Wy, the temperature, the
entropy, the energy of the lattice respectively. The key
0|nt is that, from the Gibbs relations, one can define
e entropy -fluxes for the electrons and the lattice

principle (MEP) leads to a systematic way for obtaining Jgai (JW 7T Ji = 1 i, (6)

constitutive relations on the basis of the information Se = s

) L
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theory, as already proved successfully in the bulk caggere 7o — pove, Jo, — p2Se, and the quantity
[11]-[16], and for quantum well structures [17], [18]. We v

define the entropy of the electronic system as

Se = Z|xa(x,y,t)|253
2

53 = _7kB/R(falnga_fa)dk

(2m)

and, according to MEP, we estimate thg's as the
distributions that maximizé&, under the constraints that ot ozt

g = T2 ™)

is known as electron heat flux density. By definityg; =
Se+Sp and J§,,, = Jg. + J§, then, from the moment
system, one can erte down the total entropy balance
equation [21]

OStot 0T,

=0 (8)

the basic moments, which we have previously consid-

ered, are assigned. In a neighborhood of local thermal
equilibrium, the distribution function writes [19]
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where¢® = —% + e¢® is the electrochemical potential,
and we have assumed that the electrons and the lattice
in local thermal equilibrium at the same temperature, i. 800
T¢ =Ty, . From the previous equation we can identif
the thermodynamic forces(,, and the corresponding
generalized fluxed,, i.e.
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—k— Ny = 107 cm™3
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—5— N, = 5x10Y7 cm™
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According to Linear Irreversible Thermodynamict 200 . n - -
(LIT) [22], linear relations must hold between fluxes an Area (nm?)
forces, i.e.

J, =L, X, . (12) Fig. 1. The Thermopowes, (17) versus the cross sectional area
H=mR of the SiINW, at room temperature.

One of the basic principle of LIT is the Onsager Reci-
procity Principle (ORP), which is a manifestation of
microscopic reversibility for any statistical system near V. THERMOELECTRIC PROPERTIES

thermal equilibrium and therefore, any properly formu- . . .
lated statistical physical model should satisfy it. Th Our extended hydrodynamic model is able to describe

S . fﬁermoelectric effects in SINWs. In fact under the hy-
Onsager principle states the symmetry of the constitutive : -
matrix. i.e pothesis of small electric field, the system formed by
T I 13 the electrons and phonon is in LTE and we can apply
e (13) the previous arguments. From the eq.(14), under the
Close to local thermal equilibrium, we shall suppos@ypothesis of open circuit (i.el* = 0), we can define

the electron kinetic energy can be neglected respectti@ Thermopower (or Seebeck coefficient) as

the thermal one, i.e. s s Ade b
_ 2050 ga_ A0 = —kp;2. (17)
11

1 1 Sda 04 =
We ~ ikBTg = ikBTL . Za pe ATy, J=0

In this case, in the stationary regime, we can obtain frofhis coefficientS; represents the diffusive contribution
our hydrodynamic model which, at room temperature, is two order of magnitude

o with respect to the phonon-drag contribution [23], [24].
J& = bu(pa7wa)aai +b12(p“,W0‘)88 (kpTy) (14) Let us consider the case in which the temperature

o4 ; gradient vanishes. Then egs. (7),(14),(15) reduce to
= bo1 (p%, W) —— + baa(p*, W*)— (kpTL) (15 .
i = b (0%, W) 0z + ba(p%, W )82( 5T1) (19) Jo — bn&ﬁ Jior _ ba1 —Dbnjazi (18)
where the coefficients;; are known quantities [19]. Now 0z’ b1
from the definitions (10),(11) and the egs.(14), (15) Wgance a particle flux/® produces a heat flux density
can identify Ji<, which can be understood as the Peltier effect. Since
Liy =Tibyy , Ly = —kp(TL)%bs J;* = (0,0, J;) then the Peltier coefficient is defined as
Lot = Tp(bo1—ob11) ,  Lao = —kp(T1)?(baa—b12) e = 9y (19)
N 9J%|yT,=0
and the ORP (13) implies
and the eq.(18) gives the Peltier coefficient for th¢h
—kpTpbig = bay —vb11 . (16) subband
The validity of the previous equation has been verified o — bo1 (p™, W) o (20)

numerically up to the machine zero precision. ~ big(p, W)



Moreover we have [5] O. Muscato, W. Wagner and V. Di Stefandumerical study of

a[ba(@)  —a the systematic error in Monte Carlo schemes for semiconductors
Yoo pOII a0l [bu(a) —v } ESAIM: M2AN, 44(5), 1049-1068, (2010)
II= S = S oo (21) [6] O. Muscato, W. Wagner and V. Di StefanByoperties of the
(e} «

steady state distribution of electrons in semicondugt&igetic
and Related Modelg}(3), 809-829, (2011)

O. Muscato, V. Di Stefano and W. Wagnék, variance-reduced
electrothermal Monte Carlo method for semiconductor device
simulation in press on Computer& Mathematics with Appli-
cations (2012), doi:10.1016/j.camwa.2012.03.100

[8] G. Ossig and F. Schuerre&jmulation of non-equilibrium electron

. . . . transport in silicon quantum wiresJ. Comput. Electron.y,
If we substitute (17), (20) into the previous equation, 367370, (2008)

we obtain the eq.(16), and the Kelvin relation is @) A. Majorana, O. Muscato and C. MilazzGharge transport in
consequence of the ORP. So far we have verified that 1D silicon devices via Monte Carlo simulation and Boltzmann-

the extended thermodynamic model, for small electrjc_Poisson solverCOMPEL,23(2), 410-425, (2004)

. . . . .[10] D. Jou, J. Casasdzquez and G. Leborgxtended irreversible
fields, is compatible with the ORP. In order to obtalh thermodynamicsSpringer-Verlag, Berlin, (2001)

quantitative results, we have considered a wire withi] 0. Muscato and V. Romandimulation of submicron silicon
square cross-section and infinite confining potential. diodes with a non-parabolic hydrodynamical model based on
Consequently, the kinetic energies associated to the € maximum entropy principl¢/LSI Design,13(1-4), 273-279,

. : "' 2001)
confinement and the corresponding envelope functions) o. Muscato and V. Di Stefandylodeling heat generation in

have analytic expressions. Figure 1 shows the cross a sub-micrometrica™ — n — n™ silicon diode J. Appl. Phys.,
sectional area effect 0;, at room temperature. The  10412), 124501, (2008)

. [ O. Muscato and V. Di Stefandjydrodynamic modeling of the
Thermopower decreases remarkably in accordance Jt%Jelectro-thermal transport in silicon semiconductods Phys. A:

the simulation results obtained in [25], where atomistic Math. Theor.,44(10), 105501, (2011)
calculations for electronic structures and the BTE in thH&4] O. Muscato and V. Di Stefancin Energy Transport Model

relaxation time approximation have been used. Describing Heat Generation and Conduction in Silicon Semi-
bp conductors J. Stat. Phys.144(1), 171-197, (2011)

VI. CONCLUSION [15] O. Muscato and V. Di Stefand,ocal equilibrium and off-
] ] equilibrium thermoelectric effects in silicon semiconductars

An extended hydrodynamic model for SINWs has Appl. Phys.,1109), 093706, (2011)
been formulated with the use of the maximum entrofd§6] O. Muscato and V. Di StefanoHeat generation and transport

T - _ in nanoscale semiconductor devices via Monte Carlo and hydro-
principle. The transport coefficients are completely deter dynamic simulationsCOMPEL, 30(2). pp. 519-537. (2011)

mined without any f_it_ting procedure. For _smaII elec_triFﬂ] G. Mascali and V. RomandA non parabolic hydrodynamical
fields, we have verified that our model is compatible subband model for semiconductors based on the maximum en-

Another well known results of LIT is the Kelvin
relation, which states that the Thermopower and th8
Peltier coefficient are linked by the following relation

I = S,T1 (22)

with the ORP, and the Thermopower and the Peltie
coefficient have been obtained.
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