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Abstract—We present an extended hydrodynamic model
describing the transport of electrons in the axial direction
of a silicon nanowire. This model has been formulated by
closing the moment system derived from the Boltzmann
equations on the basis of the maximum entropy principle of
Extended Thermodynamics, coupled to the Effective Mass
and Poisson equations. Explicit closure relations for the
high-order fluxes and the production terms are obtained
without any fitting procedure, including scattering of
electrons with acoustic and non polar optical phonons.
By using this model, thermoelectric effects have been
investigated.

I. I NTRODUCTION

By shrinking the dimension of electronic devices,
effects of quantum confinement are observed Under
reasonable hypotheses, transport in low-dimension semi-
conductors can be tackled using semiclassical tools. In
fact, the main quantum transport phenomena in Silicon
Nanowires (SiNW) transistors at room temperature, such
as the source-to-drain tunneling, and the conductance
fluctuation induced by the quantum interference, become
significant only when the channel lengths are smaller
than 10nm [1]. Therefore, for longer channels, semi-
classical formulations based on the 1-D multisubband
Boltzmann Transport Equation (MBTE) can give reliable
simulation results when it is solved self-consistently
with the 3-D Poisson and 2-D Schrödinger equations in
order to obtain the self-consistent potential and subband
energies and wavefunctions [2]. Another simplification
comes from the use of the Effective Mass Approximation
(EMA), which is supposed to be still a good solution
in the confining direction in the presence of disorder,
which is probably valid for semiconductor nanowires
down to 5 nm in diameter, below which atomistic elec-
tronic structure models need to be employed. Solving
the MBTE numerically is not an easy task, because it
forms an integro-differential system in two dimensions
in the phase-space and one in time, with a complicate
collisional operator. A considerable simplification of the
MBTE can be obtained employing the relaxation time

approximation for the collisional operator [3], whereas
the full solution of the MBTE can be obtained or by
using the Monte Carlo (MC) method [4]-[7] or by
using deterministic numerical solvers [8],[9] at expense
of huge computational times. Another alternative is
to obtain from the MBTE hydrodynamic models that
are a good engineering-oriented approach. This can be
achieved by taking moments of the MBTE, and by
closing the obtained hierarchy of balance equations as
well as modeling the production terms (i.e. the moments
on the collisional operator).

II. T HE EXTENDED HYDRODYNAMIC MODEL

For a SiNW with linear extension along the z-
direction, the MBTE for the electron distribution func-
tions fα(z, kz, t) in eachα-th subband writes [2]
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whereEc is the conduction band edge energy, andεα the
kinetic energy associated with the confinement. All the
relevant 1D scattering mechanisms in Si, i.e. acoustic
phonon scattering and nonpolar phonon scattering, are
taken into account by the collisional integralCη[fα, fα′ ].
This transport equation must be coupled to the EMA-
Poisson system. By multiplying the MBTE by the weight
functionsψA = {1, vz, εz, vzεz}, and integrating in the
kz space, one obtains the following hydrodynamic-like
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in the unknowns (called moments)ρα (1-D density),
V α (mean velocity),Wα (mean energy) andSα (mean
energy-flux), and
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This system of PDEs is of hyperbolic type.

III. C LOSURERELATIONS

The above moment system is not closed: there are
more unknowns than equations. The maximum entropy
principle (MEP) leads to a systematic way for obtaining
constitutive relations on the basis of the information
theory, as already proved successfully in the bulk case
[11]-[16], and for quantum well structures [17], [18]. We
define the entropy of the electronic system as

Se =
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and, according to MEP, we estimate thefα’s as the
distributions that maximizeSe under the constraints that
the basic moments, which we have previously consid-
ered, are assigned. In a neighborhood of local thermal
equilibrium, the distribution function writes [19]
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where the quantities(λα, λα
W , λ̂α

V , λ̂
α
S) are known func-

tions of the moments{ρα, V α,Wα, Sα}. By using the
distribution function (4), the higher-order flux term
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have been determined. We underline that this extended
hydrodynamic model has been closed by using first
principles, and it is free of any fitting parameters.

IV. L OCAL THERMAL EQUILIBRIUM

When the electric field is small, the system formed
by the electrons and phonons is in Local Thermal
Equilibrium (hereafter LTE). In this case, we assume
that the system under study can be split into a series
of sub-systems sufficiently large to allow them to be
treated as macroscopic thermodynamic subsystems, but
sufficiently small that equilibrium is very close to being
realized in each sub-system. In our scheme, this regime
will be characterized by setting the smallness parameter
τ = 0 and, in such a case, the eq.(4) reduces to the local
maxwellian. In this regime, Gibbs relations hold for each
sub-system, i.e.
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whereTα
e is the electron temperature,ν̄α is the chemical

potential for the electrons with respect to the energy of
theα-th subband [20] ,TL, SL, WL the temperature, the
entropy, the energy of the lattice respectively. The key
point is that, from the Gibbs relations, one can define
the entropy-fluxes for the electrons and the lattice
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is known as electron heat flux density. By definingStot =
Se + SL andJ i
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Se + J i

SL
then, from the moment

system, one can write down the total entropy balance
equation [21]
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whereφ̂α = −ν̄α +eφα is the electrochemical potential,
and we have assumed that the electrons and the lattice are
in local thermal equilibrium at the same temperature, i.e.
Tα

e = TL . From the previous equation we can identify
the thermodynamic forcesXµ and the corresponding
generalized fluxesJν , i.e.
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According to Linear Irreversible Thermodynamics
(LIT) [22], linear relations must hold between fluxes and
forces, i.e.

Jν = LνµXµ . (12)

One of the basic principle of LIT is the Onsager Reci-
procity Principle (ORP), which is a manifestation of
microscopic reversibility for any statistical system near
thermal equilibrium and therefore, any properly formu-
lated statistical physical model should satisfy it. The
Onsager principle states the symmetry of the constitutive
matrix, i.e.

Lνµ = Lµν . (13)

Close to local thermal equilibrium, we shall suppose
the electron kinetic energy can be neglected respect to
the thermal one, i.e.

Wα ≃
1

2
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α
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2
kBTL .

In this case, in the stationary regime, we can obtain from
our hydrodynamic model
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where the coefficientsbij are known quantities [19]. Now
from the definitions (10),(11) and the eqs.(14), (15) we
can identify

L11 = TLb11 , L12 = −kB(TL)2b12

L21 = TL(b21−ν̄b11) , L22 = −kB(TL)2(b22−ν̄b12)

and the ORP (13) implies

−kBTLb12 = b21 − ν̄b11 . (16)

The validity of the previous equation has been verified
numerically up to the machine zero precision.
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Fig. 1. The ThermopowerSd (17) versus the cross sectional area
of the SiNW, at room temperature.

V. THERMOELECTRIC PROPERTIES

Our extended hydrodynamic model is able to describe
thermoelectric effects in SiNWs. In fact under the hy-
pothesis of small electric field, the system formed by
the electrons and phonon is in LTE and we can apply
the previous arguments. From the eq.(14), under the
hypothesis of open circuit (i.e.Jα = 0), we can define
the Thermopower (or Seebeck coefficient) as
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This coefficientSd represents the diffusive contribution
which, at room temperature, is two order of magnitude
with respect to the phonon-drag contribution [23], [24].

Let us consider the case in which the temperature
gradient vanishes. Then eqs. (7),(14),(15) reduce to
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hence a particle fluxJα produces a heat flux density
J iα

h , which can be understood as the Peltier effect. Since
J iα

h = (0, 0, Jα
h ) then the Peltier coefficient is defined as
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and the eq.(18) gives the Peltier coefficient for theα-th
subband

Πα =
b21(ρ

α,Wα)

b11(ρα,Wα)
− ν̄α . (20)



Moreover we have
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Another well known results of LIT is the Kelvin
relation, which states that the Thermopower and the
Peltier coefficient are linked by the following relation

Π = SdTL . (22)

If we substitute (17), (20) into the previous equation,
we obtain the eq.(16), and the Kelvin relation is a
consequence of the ORP. So far we have verified that
the extended thermodynamic model, for small electric
fields, is compatible with the ORP. In order to obtain
quantitative results, we have considered a wire with
square cross-section and infinite confining potential.
Consequently, the kinetic energies associated to the
confinement and the corresponding envelope functions
have analytic expressions. Figure 1 shows the cross
sectional area effect onSd, at room temperature. The
Thermopower decreases remarkably in accordance to
the simulation results obtained in [25], where atomistic
calculations for electronic structures and the BTE in the
relaxation time approximation have been used.

VI. CONCLUSION

An extended hydrodynamic model for SiNWs has
been formulated with the use of the maximum entropy
principle. The transport coefficients are completely deter-
mined without any fitting procedure. For small electric
fields, we have verified that our model is compatible
with the ORP, and the Thermopower and the Peltier
coefficient have been obtained.
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