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Abstract—In this paper we present an improved version to any thermal model is the significant difference in
of the Electrothermal Monte Carlo method. This modifi- ~ the characteristic time scales of electronic and thermal
cation has better approximation properties due to reduced transport. The transfer of energy from the electrons to
statistical fluctuations. Simulation results in 2D structues ha silicon lattice occurs in a time scale of about 0.3
are presented. ps through interactions between electrons and phonons,

|. INTRODUCTION while the transport of thermal energy by phonons has

effective relaxation time ofv 80 ps, yielding a
Itfference of two order of magnitude [2]. Consequently,
e energy transfer from the electrons to phonons is

In sub-micron semiconductor devices the presence
very high and rapidly varying electric fields is the caus

of non-equilibrium phenomena such as the producti(S dqt nstant v wh dto th

of hot electrons and the thermal heating of the crys S?Te ° otccur llns an Znt?]ousgw en Cc?rﬁpatri 0 et

lattice. The external electric field transfers energy to t gat transport scales, and the charge and heat trahspor
can be decoupled. Under this ansatz, the charge trans-

electrons and in turn to the crystal lattice through thé ‘ be d ved by Electroth | Monte Carl
scattering mechanisms. The self-heating can influerfgd ™ can be described by Electrothermal vionte L.arlo

significantly the electrical performances since the disss.l'—mUIat_'onS [Sl]'([jlj}] t\;]vhehre fdf[;fadl_tlonal eltgctrori Ml'ch
pated electrical energy causes a temperature rise oveﬁgwer is coupled to the heat diffusion equation (1). The

extended area of the device resulting in increased pov%)ru':)IIng between this equation and the charge fransport

dissipation. The transport of heat in semiconductors ' _guaraqteeq by means. of _thﬁ term. One of the_
due to the propagation of lattice vibrations (phonons ritical points is the determination of this heat-genemati

whereas the contribution given by the electrons (do I<‘31te. In the context of traditional semiconductor device

nant in the case of metals) is estimated of the ordg 1simulations, this term is typically computed starting from
even in the case of very large concentration [1] the dot product on the electric field and the current

In case of diffusive transport, where the device dime'q_ensity [1], but numerical simulations ShOW. that this is
sion L is much greater then the charge inelastic mel t correct when the transport become ballistic [9]. In a
free path £ 10 nm in silicon at room temperature), th onte Carlo framework, the lattice heating rate can be

charge transport can be described by the drift-diﬁusi(i(;r?fl\ll“ate(ihby T.CCtOUI’l'[Ing ;o:hthelr tetxcha%g]]_e of F hch]nons
model [1] coupled to the heat diffusion equation etween the electrons an € lattice. This net phonon

emission method was applied for the first time in [12]
Csaﬂ =V, (kVaTr(z)) + gla, t) 1) without inc_luding heat d.iffusion effects. The purpose of
ot the paper is to study this methodology and to present a

where the Fourier law has been assun¥gdis the lattice modification which allows a reduction in the statistical
temperature(C's and x are the heat capacity per unifluctuations.
volume and the thermal conductivity respectively, and
g(x,t) represents the heat-generation rate per unit vol- II. ELECTROTHERMAL MONTE CARLO
ume. But for small devices, the drift-diffusion model is _ . _ .
no more valid, and the charge transport must be modeled "€ main steps of this algorithm are the following:
in a more accurate way. An important issue that arisesl) Run the standard isothermal MC algorithm until
from the coupling of any electronic transport algorithm the steady-state is reached [13], [14].



2) As the steady state is approached, various elend the coupling constants are given in [16]. From
tronic parameters are sampled for typically 2€he previous equations one can evaluateittiegrated
ps to generate the results from this iteration. Iscattering probability per unit time, where the signs
particular, the sum over all phonon emission minus and - indicate emission and absorption of the i-th
phonon absorption events per unit time@inted phonon, i.e.
i.e.

Vo) = [ SE KK ™
g(z) = (H) (x) =
L N Now we can modify Step 2 of the algorithm described
hw; |CfF — CF (2) in previous section. The heat generation rate is approx-

Nobs Z]: {NpAt Zl: [ }} imated as
where N, is the total number of observation g9(z) = (H) () (8)
times, n and N, are respectively the electronnere
density and the particle number in thecell, At N
is the time interval in which the counting is made, H) (2) 1 ] n Zp: G e (ki (£))] 9)
hw; is the energy of the exchanged phonon, and T Nops N, E\Fip\E;
C;t,C; are the numbers of the i-th phonon emitted
and absorbed respectively. This quantity is used Rigbs
an approximation to the rate of heat generation at G(e) = Zhwi {)\jﬁ'(a) _ )\_—(E)} _ (10)
position z. ; ’ ’

3) The spatla_lly varying lattice te_:mperature dISmbul‘n [15] we have proved why this algorithm reduces the
tion 77 (z) is obtained by solving the steady-statgari ance
heat diffusion equation (1). '

4) In the next iteration the MC algorithm is rerun, IV. NUMERICAL EXPERIMENTS

where the scattering rates are updated according tQxs first benchmark we have simulated a Silicon MES-
the new lattice temperature distributi@i, which FgT doped to 3x10'7 em~2 in the n+ zone and0'’
is a function of the position. ~em~%in the n zone, with Vsource = 0V, Vgate = -0.8 V
5) This iterative procedure is performed until th@nd vdrain = 1V [17]. In the figure 1 we have plotted the
terminal currents converge to the electrothermgkat generation rate obtained with the counting formula
steady-state values. (2), and in the figure 2 that evaluated with the integrated
1. VARIANCE-REDUCED probability formula (9), using the same particle number
and simulation time. From these figures it is evident that
the integrated probability estimator shows significantly

which represgnts the probability that,_ in the unit tlm‘?C)Wer fluctuations compared to the counting estimator.
an electron with wave-vectot passes into a new stat hen. we have simulated an ultra-scale MOSFET

K’. In silicon, the main scattering mechanisms, at rOOFS

. . : m - ilicon r nd n- r
temperature, are due to scattering with acoustic and ed by ap type silicon subst atea} d 'type source
. and drain region [18]. The source/drain regions have a
optical phonons, where

uniform n-type doping ofl0?° ¢m =3, and the substrate
Sac(k, k') = Kb [e(k) — e(K)] has an uniform p-type doping d0'¢ ¢m =3, while the
channel region has a uniform p-type doping uf'®
, 6 P _ , em™3. The gate and source/drain voltages are set to
Sop(k, k') :Z{Si (k, k') + 5; (k’k)} (3) be 1 V each. The results are shown in the figures
S — Kid E:(k,) (k) + hu] (gi + 1) @) (3), (4) confirming again the goodness of the integrated

probability estimator.
SZ_ = Kld [8(/6’) - E(k) — hwi] gi (5)

wheree(k) is the electron kinetic energy;(77) is the
thermal equilibrium number of optical phonons

1
9i(Tr) = exp (kzuj)i) 1

j P ip=1

is the total number of observation times and

Let us introduce the transition scattering rate:, k'),

—

(6)
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Fig. 1. The heat generation rate versus the position in the MESFET. 3. The heat generation rate versus the position in the MOSFET

[17], evaluated by means of the counting estimator (2). [18], evaluated by means of the counting estimator (2).
Mesfet Heat generation formula Mosfet Heat generation formula
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Fig. 2. The heat generation rate versus the position in the MESFETg- 4. The heat generation rate versus the position in the MOSFET
[17], evaluated by means of the integrated probability estimator (4J.8]. evaluated by means of the integrated probability estimator (9).

V. CONCLUSION We have shown that, by running 2D simulations,
the new estimator reduces the variance. Moreover, it
The electrothermal Monte Carlo algorithm providegdicates that the electrothermal Monte Carlo algorithm
a rather efficient tool for studying heat generation arsblves the steady state Boltzmann transport equation cou-
transport in small semiconductor devices, at expensepdéd with a steady state heat diffusion equation. Efficient
huge computational effort. The coupling between the METMC simulations can be also a useful benchmark for
charge transport and the heat diffusion equation is giveesting hydrodynamic models based on the Boltzmann
by a term called heat generation rate. Usually this teraguation [19]-[26].
is determined by counting, during the steady-state, the
number of phonons emitted/absorbed. In this paper we VI. ACKNOWLEDGMENT
have presented a new estimator of the heat generatio®.M. and V.D. acknowledge the support of the Univer-
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