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Abstract—Particle simulation techniques utilizing

classical or quantum weights commonly involve a

phase space grid for the calculation of averages. Prop-

erties of alternative particle-grid simulation strategies

are investigated by using an experiment highly sensi-

tive to variance. It is provided by the fine structure

of entangled electron states subject to scattering

with phonons. As the process of evolution describes

decoherence and transition from quantum to classical

our analysis concerns both transport regimes. An

algorithm based on randomization-annihilation of

particles shows better performance than an Ensemble

Monte Carlo method.

INTRODUCTION

Efforts for a generalization towards quantum

transport exist since more than two decades [1]

and gave rise to Monte Carlo techniques which

rely on the numerical aspects of the transport

description [2]. Quantum particles have recently

been shown as a viable approach for the simula-

tion of nano structures, which bridge the gap be-

tween purely coherent and semi-classical transport

regimes [4]. Common features for such particles are

that they evolve along classical trajectories, while,

e.g., the quantum information is carried by a dimen-

sionless quantity – affinity or sign, which may be

associated with the semi-classical particle weights.

The total weight – quantum or semi-classical –

accumulated around a given phase space point along

with the local value of a generic physical quantity

are used for evaluation of its averaged value. A

phase space grid is commonly utilized to store the

weight of all particles at consecutive time steps.

Usually the same particles continue the evolution.

Alternatively the weight can be redistributed be-

tween newly generated particles [3], which survive

only for a single time step. The peculiarities of

these approaches are explored with the help of

several notions similar to simulations using cellular

automata [6].

THE RANDOMIZATION-ANNIHILATION MONTE

CARLO (RAMC) ALGORITHM

Previously investigated algorithms make use of

individual numerical particles, keeping track of each

of their positions and weights, for their operation.

The quantum nature of the problem under investi-

gation is expressed by the existence of positive as

well as negative weights. We present an algorithm

which moves towards indistinguishable particles.

The phase space associated with the simulation

domain is subdivided into cells which are used to

store the number of particles in the cell as well

as the total weight associated with the sum of all

particles. Initially, the cells are seeded with values

corresponding to the initial condition of a coherent

state composed of two Gaussian wave packets [5].

Fig. 1. Particles (black – positive, white – negative) are

recorded as they enter the cell. Opposing weights are anni-

hilated (yellow). The surviving weight (green) is emitted as

particles from the cell by randomizing the starting position from

within the cell. The number of emitted particles is the same as

the number of entering particles.

Figure 1 illustrates the operation of the RAMC

algorithm. Each of the cells keeps track of the par-

ticles entering. Not only are the weights recorded,

but also the number of particles. The number of
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particles is maintained, whereas opposing weights

(illustrated in black and white) are canceled (par-

ticles marked in yellow). The surviving weight

(particles marked in green) is then emitted divided

equally among the number of total particles which

have entered the cell.

Particles are then generated from a given cell each

carrying an equal piece of the stored total weight,

until the cell is emptied. The particles originating

from a cell are not distinguishable, e.g., by their

weights. The exact point of origin is chosen at

random from within the cell.

The particles then evolve for a given time step

using Newton’s trajectories after which the weight

is accumulated in the cell corresponding to the final

position. At the same time the counter of particles in

the cell is increased. This on the one hand ensures

the conservation of the number of particles, while on

the other hand implements an annihilation scheme

for particles of opposing weights.

The aggregating and randomizing nature of the

RAMC algorithm also has the added benefit of

reducing the amount of memory required at run

time, since not each and every particle must be

tracked individually during the whole duration of

the simulation.

kx
x

Fig. 2. Initial quantum state used to gauge the EMC and

RAMC algorithms.

APPLICATION & RESULTS

The system the EMC and RAMC algorithms

are applied to begins in a purely quantum state,

due to two entangled Gaussian wave packets. It is

described by the expression
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Fig. 3. Scattering processes redistribute the initial distribution

progressively annihilating the quantum information.
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The initial state is constructed such as to incorporate

a well pronounced oscillatory term, which may

be interpreted as formed by particles with positive

and negative weights. Figure 2 depicts this initial

configuration including the strong oscillations.

From the quantum setup it then evolves towards

a classical configuration. The fine quantum charac-

teristics are suppressed as the system evolves and

correlations are destroyed due to the non-coherent

scattering processes, which redistribute the phase

space distribution. Figure 3 shows the the effect of

the redistribution due to scattering, the initially fine

structure in the central part is especially susceptible

to this process. This makes the evolution sensitive

to the variance of the employed algorithm. A possi-

ble reduction provided by the RAMC algorithm is

therefore of great interest in this particular case.

Figure 4 compares the densities computed using

EMC as well as the RAMC algorithms after 400fs
of evolution. While the quantum features are still

observable in both, the lower variance algorithm

makes them much more apparent. Figure 5 shows

the estimates for the relative errors computed for

the densities for each of the algorithms.

Figure 6 shows the distribution of momenta after

400fs of evolution. The observation of reduced

variance is further reinforced by comparing the

relative errors, which are provided in Figure 7.
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Fig. 4. Evolution of the density of a state comprised of two

entangled Gaussians after 400fs. The EMC and the RAMC

algorithms show excellent agreement, with the latter demon-

strating numerical superiority.
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Fig. 5. The RAMC algorithm produces lower relative errors

than the EMC algorithm in the case of densities.
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Fig. 6. Evolution of the momentum distribution of a state

comprised of two entangled Gaussians after 400fs. The EMC

and the RAMC algorithms show excellent agreement, with the

latter demonstrating numerical superiority.
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Fig. 7. The RAMC algorithm produces lower relative errors

than the EMC algorithm for the momentum distribution.

The excellent agreement of the EMC and RAMC

algorithms is shown in the figures. The introduced

RAMC algorithm thus not only has the benefit

of a reduced memory footprint as not the entire

ensemble of particles is kept in memory, but also

results in a lower statistical error.
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