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Abstract—With the aim of manufacturing faster and smaller
devices, the electronic industry is today entering into the
nanoscale and the high frequency regimes. In this particular
scenario, the dynamics of the electron charge becomes affected
by quantum mechanical laws, both, for its spatial or temporal
description. We have recently shown that Bohmian trajectories
allow a direct treatment of the time-dependent many-particle
interaction among electrons with an accuracy comparable to
Density Functional Theory techniques. In addition, Bohmian me-
chanics, by combining wave functions and trajectories, provides
a very simple description on how to describe multi-time measure-
ments in quantum scenarios. Using the previous formalism, in this
work we present a general purpose time-dependent 3D quantum
electron transport simulator named BITLLES (Bohmian Inter-
acting Transport in large low-dimensional Electronic Structures)
especially indicated for AC, transients and noise predictions. As
a numerical example of its capabilities, we compute the full
electrical characteristics (DC, High frequency and fluctuations)
of a Resonant Tunneling Diode.

INTRODUCTION

Due to the increase of the complexity and cost of the
technological processes necessary to fabricate nanodevice
prototypes, physical theories on electron transport constitute
at this moment a research and development cost reduction
amount up to 40% [1]. A great scientific effort has been
devoted to describe DC properties of quantum devices. How-
ever, predicting dynamic properties (AC, transient, noise, etc.)
of quantum devices is still a very challenging task for the
scientific community; mainly because of two reasons. First,
a multi-time measurement of the current is needed when
computing dynamic properties, which implies discussing the
(non-unitary) time-evolution of the quantum device when
the current is measured. Second, understanding the time-
dependent behavior of electron devices implies dealing with
conduction plus displacement currents. The consideration of
the displacement current requires, in turn, the time-dependent
solution of the many-particle Schrödinger equation. In the next
two subsections, we discuss both difficulties in detail.

A. The role of the displacement current

The displacement current is routinely considered in the
dynamic simulation of semi classical devices. However, in
spite of the explicit efforts done by reputed scientist such as
Landauer [2] and Buttiker [3] to publicize the important role
of the displacement current in quantum scenarios, it is not
always explicitly considered. For this reason, we will repeat

Fig. 1. Schematic representation of the different elements that constitutes any
experimental setup. Only the device active region is explicitly considered as
the simulating box. The rest of degrees of freedom (associated to the cables,
batteries, ammeter, etc) are not explicitly considered in the simulations.

here a quite simple exercise emphasizing the relevance of the
displacement current [4].

In the scheme of Fig. 1, the device active region consti-
tutes the simulating box. The rest of parts are not explicitly
simulated (cables, batteries, ammeter) but they are present
in any experimental setup. The experimental current is that
measured on the surface SA. However, only predictions about
the current flowing through the surface SD are computationally
accessible. The conduction (particle) current density J⃗c(r⃗, t)
through SD is not equal to that through SA. For example, in a
two parallel plates capacitor, the number of electrons crossing
the surface SD between the plates is certainly not equal to the
number of electrons crossing a surface SA in the cable. Thus,
the conduction (particle) current alone, J⃗c(r⃗, t), is not what it
is measured by the ammeter.

Under the assumption that the cable behaves as a two-
terminal element, the current though the surface of the cylin-
dric volume Λ of Fig. 1 parallel to the cable is zero. Then,
we are looking for a definition of the total density current,
J⃗T (r⃗, t), that satisfies

∫
SΛ

J⃗T (r⃗, t) ds⃗ = 0 (where SΛ is the
total surface of the cylinder) or its local version ∇⃗J⃗T (r⃗, t) = 0.

To define such current, we consider the continuity equation
dρ(r⃗, t)/dt+ ∇⃗J⃗c(r⃗, t) and the Gauss equation

∇⃗E⃗(r⃗, t) = ρ(r⃗, t)/ϵ, (1)

with ρ(r⃗, t) the charge density of all the particles, ϵ the
dielectric constant and E⃗(r⃗, t) the self-consistent electric field.
Putting (1) into the continuity equation, we arrive at:

∇⃗

(
J⃗c(r⃗, t) + ϵ

dE⃗(r⃗, t)

dt

)
= 0, (2)



that properly integrated in the appropriate surface gives:

ISA
(t) =

∫
SA

J⃗c(r⃗, t)ds⃗+

∫
SA

ϵ
dE⃗(r⃗, t)

dt
ds⃗. (3)

The first integral is the conduction current, Ic(t), while the
second the displacement current Id(t). By construction, the
sum of the two currents ensures that the measured current
ISA

(t) is exactly equal to the simulated ISD
(t), at any time.

It is interesting to notice that the role of the displacement
current is much less relevant for DC predictions. The reason
is because, the time averaged displacement current becomes
zero:

⟨Id(t)⟩ = limT→∞
1

T

∫ T

0

dt

∫
SA

ϵ
dE⃗(r⃗, t)

dt
ds⃗

= limT→∞

∫
SA

ϵ
E⃗(r⃗, T )− E⃗(r⃗, 0)

T
ds⃗ = 0. (4)

The average value of the displacement current is zero be-
cause the electric field E⃗(r⃗, T ) on any surface S does not
monotonically grow, but just fluctuates around E⃗(r⃗, 0). How-
ever, for AC, transients and noise computations, considering
the conduction (particle) plus the displacement currents is
of fundamental relevance. The explicit consideration of the
latter in quantum scenarios needs to include the many-body
Coulomb interaction among the electrons. As we will discuss
in subsection I-A, the quantum treatment of such many-body
problem is not at all simple.

B. The role of the multi-time measurement
Another difficulty appears also when making quantum pre-

dictions of the AC, transients and noise properties. This addi-
tional difficulty is not present in classical formalisms because
the process of measurement has a quite passive role there,
while in the orthodox explanation of quantum theory, it has
a very fundamental role. In fact, the orthodox (Copenhagen)
explanation of the time-evolution of quantum systems follows
two laws; one related to the evolution of the wave function
without measurement and another with measurement [5].

• The time-evolution of a state ϕ(x, t) = ⟨x|ϕ(t)⟩ without
measuring is determined by Hamiltonian operator Ĥ
through the well-known Schrödinger equation:

ih̄
d

dt
⟨x|ϕ(t)⟩ = ⟨x|Ĥ|ϕ(t)⟩, (5)

that can be rewritten in terms of the time-evolution
operator Û(τ) as:

|ϕ(t)⟩ = e−i Ĥτ
h̄ |ϕ(0)⟩ = Û(τ)|ϕ(0)⟩. (6)

• The time-evolution of a state ϕ(x, t) = ⟨x|ϕ(t)⟩ when
measured leads to one of the possible eigenstates |ui(t)⟩
of the current operator Î . For simplicity, we have con-
sidered a measurement process described by a (non-
degenerate) projective measurement. Such evolution can
be written through the projector:

|ϕ(t)⟩ = |ui(t)⟩⟨ui(t)|ϕ(0)⟩. (7)

After presenting these two dynamical laws, let us discuss
why the second is not fully appreciated when discussing
DC quantum transport. Under the reasonable assumption of
ergodicity, the DC current can be computed from an ensemble
average ⟨I⟩ =

∑
i IiP (Ii). Since the probability of getting

the value of the current Ii can be written (following the
Born law) as P (Ii) = |⟨ϕ|ui⟩|2 = ⟨ϕ|ui⟩⟨ui|ϕ⟩, we get
⟨I⟩ =

∑
i Ii⟨ϕ|ui⟩⟨ui|ϕ⟩. Then, using the definition of pro-

jective operator Î|ui⟩ = Ii|ui⟩ and the orthonormal condition,
1 =

∑
i |ui⟩⟨ui|, we get the final result ⟨ϕ|Î|ϕ⟩. Therefore,

for the computation of the DC quantum current, a single time
measurement is enough and only the system state |ϕ⟩ and
the current operator Î (not its eigenstates) are needed in the
computation.

However, the relevance of expression (7) becomes fully
evident when we are interested in discussing multi-time
measurements; for example, the noise, i.e. the fluctuations
of the current around the average DC value. Such noise is
quantified through the use of the autocorrelation function,
R(τ) = ⟨I(t + τ)I(t)⟩ − I2DC that involves, at least, the
measurement of the current at time t1 = t, I(t1), and time
t2 = t+ τ , I(t2). In particular, the ensemble average value of
the product of the current I(t2)I(t1) is simply given by:

⟨I(t2)I(t1)⟩ =
∑
j

∑
i

Ij(t2)Ii(t1)P (Ij(t2), Ii(t1)). (8)

The probability P (Ij(t2), Ii(t1)) can be computed again,
from Born law, as the modulus square of the initial state
that suffers the following three time-evolutions. First, at
time t1, the system wave function is transformed into one
particular eigenstate |ui⟩ due to the first measurement,
Ii(t1), Eq. (7). Then, from t1 till t2, the system evolves
according to the Schrödinger equation, Eq. (6). The final
sate, after another measurement of Ij(t2), following Eq.
(7), is |ϕ(t2)⟩ = |uj⟩⟨uj |Û(τ)|ui⟩⟨ui|ϕ(0)⟩. Certainly, the
Schrödinger equation alone is not enough to correctly predict
such noise properties.

Among other formalisms available to deal with quantum
transport, Buttiker [3] was the first to address both problems
mentioned above by extending the first quantization proposal
of Landauer towards the second quantization language in
terms of creating and annihilating operators, allowing a proper
treatment of the measurement and (many-body) displacement
current. Here we present a quite different quantum transport
formalism based on the use of the conditional wave function:
a many-particle wave function where some degrees of freedom
are substituted by quantum Bohmian trajectories [5]. The
formalisms presented here does also perfectly capture the
two dynamic aspects discussed above: the need for a many-
body approximation to deal with the displacement current
and the special treatment of the quantum measurement. Our
formalism can be adapted to any realistic situation and we do
also develop a quantum transport simulator, named BITLLES
(Bohmian Interacting Transport in large low-dimensional Elec-
tronic Structures) [6]. Both the formalism and the simulator



will be explained below, showing its capabilities and numerical
viability.

I. THE BITLLES SIMULATOR

As discussed in the introduction, it is computationally
unfeasible to account for all the degrees of freedom enclosed in
the whole solid-state system (battery, wires, sample,...) drawn
in Fig. 1. In practical situations, then, we neglect a large part
of the degrees of freedom focusing only on N(t) explicitly
simulated electrons. In this regard, since we deal with an
open system that exchange energy and electrons with outside,
we cannot completely specify the initial N(t)-particle wave
function inside the simulation box because we do not know
with certainty the number of electrons N(t), their energies,
their positions, etc. In BITLLES, the adaptation of Bohmian
mechanics to electron transport in open systems, leads to a
quantum Monte Carlo algorithm where randomness appears
precisely because of these uncertainties. In particular, we take
into account two statistical ensembles of the initial properties
of the electrons within our numerical simulations [5], [7]. First,
a g-distribution represents the infinite ensemble of all possible
distributions in the initial positions of Bohmian particles.
Second, an h-distribution takes into account the uncertainty in
the number of electrons in the active region N(t), the mean
energy associated to their wavepackets and the injection times
of each electron, etc.

A. The computation of the displacement current through the
many-particle Schrödinger equation

It is well-known that the many-particle Schrödinger equa-
tion can be only solved for very few degrees of freedom. Thus,
in order to provide an accurate description of the electron-
electron correlations, quantum transport simulators must con-
sider a reasonable approximation of this many-particle prob-
lem. In this regard, BITLLES nourishes from a recently pub-
lished algorithm that, on the grounds of Bohmian Mechanics,
let us solve the many-particle Schrödinger equation in terms of
multiple (single-particle) pseudo-Schrödinger equations with-
out loosing the explicit inclusion of the Coulomb and exchange
correlations (at a level comparable to the Time Dependent
Density Functional Theory) [8]. An introductory review on
Bohmian mechanics can be found in [5].

Following reference [8] a many-particle Bohmian trajectory
r⃗a[t] associated to an a-electron can be computed from the
following single-particle wavefunction, Ψa(r⃗a, t), solution of
the next single-particle pseudo-Schrödinger equation:

ih̄
∂Ψa(r⃗a, t)

∂t
= {− h̄2

2m
∇2

r⃗a
+ Ua(r⃗a, R⃗a[t], t) + (9)

Ga(r⃗a, R⃗a[t], t) + i · Ja(r⃗a, R⃗a[t], t)}Ψa(r⃗a, t),

where we define R⃗a[t] = {r⃗1[t], r⃗a−1[t], r⃗a+1[t], r⃗N [t], t} as
a vector that contains all Bohmian trajectories except r⃗a[t].
The explicit expression for the potentials Ga(r⃗a, R⃗a[t], t) and
Ja(r⃗a, R⃗a[t], t) are in general unknown and need educated
guesses [8]. On the contrary, the term Ua(r⃗a, R⃗a[t], t) includes
all Coulomb correlations without any approximation [8],[9]. In

Fig. 2. Volume Ω. Schematic representation of the arbitrary 3D geometry
considered in this article as the simulation box for the computation of quantum
transport ensuring local current conservation.

one hand, Ua(r⃗a, R⃗a[t], t) in Eq. (9) is computed through the
following 3D Poisson equation:

∇2
r⃗a

(
ε(r⃗a)Ua(r⃗a, R⃗a[t], t)

)
= ρa(r⃗a, R⃗a[t], t), (10)

where ρa(r⃗a, R⃗a[t], t) is the the charge density associated to all
the charged particles in the active region except the a-electron,
i.e. we consider a Coulomb potential (or electric field) for each
one of the N(t) electrons [9].

It is important to emphasize that the electric field used for
the computation of the displacement current mentioned in Sec.
-A is computed from expression (1) , while the potential (or
electric field) that governs the dynamics of the electrons from
expression (10). As mentioned before, such procedure justifies
that the total time dependent current computed in a particular
surface of the simulating box is equal to that measured by an
ammeter, i.e. “current conservation” must be guaranteed [5]. In
BITLLES, such a condition is achieved by computing the total
(conduction plus displacement) current in a particular volume
through an algorithm based on the Ramo-Shockley-Pellegrini
theorems [10], [12], [11], [14]. In the Fig. 2, we represent the
6 surfaces of a parallelepiped where the current is computed.
(see Fig. 3)

On the other hand, in order to ensure “overall charge neu-
trality” and “current conservation” in the whole closed circuit,
the above N(t) Poisson equations must be accompanied by
a rigorous treatment of the active region boundary conditions
[15]. In BITLLES, the charge density, the electric field and the
scalar potential are all coupled to the injection model by taking
into account the electrostatic interaction among the electrons
within the active region and those in the leads [15]. Only this
way the amount of charge on the whole circuit can be set to
zero [15].

The Poisson equations in (10) together with the above
described boundary conditions reproduce accurately the elec-
trostatics of the active region. Then, at each simulation time
step, dt, the resulting N(t) potential energies are introduced
into the N(t) pseudo-Schrödinger equations defined in (9).
These overall procedure provides a self-consistent solution
of the Poisson and the many-particle Schrödinger equation
beyond a mean field level [5], [7], [9], [15], [10].



Fig. 3. Time-dependent total current computed on the six surfaces that
form the volume Ω of Fig. 2.. The computation of the current within the
direct method (dashed lines) has spurious effects that are not present when
the Ramo-Shockley-Pellegrini theorem (solid line) is used.

B. The computation of multi-time (measured) currents through
Bohmian trajectories

The computational algorithms of the orthodox and Bohmian
explanations of a multi-time measurement process are different
but, by construction, they both provides identical ensemble
results [5]. The differences and similitudes can be easily visu-
alized through the time-evolution of a wave packet impinging
upon a tunneling barrier, while being measured during several
times. See Fig. 4. The wave packets in Fig. 4 represent the
solution of the (unitary) Schrödinger equation for a wave
packet incident upon a tunneling barrier, at different times.
The initial wave packet (with norm equal to one) is divided
into a transmitted plus a reflected wave packet. According
to the orthodox (Copenhagen) algorithm, when the system
is measured at time t2, a nonunitary evolution appears in
the wave function and, randomly, the reflected wave packet
disappears. Only the transmitted wave packet describes the
electron at time t2. Then, when the system is measured again
at t3, the electron is still represented by the transmitted wave
packet alone.

Alternatively, the same unitary and nonunitary evolution can
be explained by adding a Bohmian trajectory to the previous
wave function evolution. The initial position of the Bohmian
trajectory is selected randomly at the initial time t0. Then,
at times t2 and t3, the evolution of the trajectory is clearly
only determined by the transmitted wave packet. The reflected
wave packet is an “empty wave” that has no effect on the
evolution of the trajectory. As expected, the probability of
measuring, first, the particle as being transmitted at time t1
and measuring, after, the same particle as being reflected at
time t2 is zero either with orthodox or Bohmian mechanics.

Figure ??: (Left) Time-evolution of a (single-particle) wave-packet impinging upon a barrier. The 
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Fig. 4. Schematic representation of a wave packet impinging upon a tunneling
barrier, while being measured at times t1, t2, t3 and t4. The orthodox
explanation of the multi-time measurement uses the wave packet alone, the the
Bohmian explanation uses the wave packet plus an initially random trajectory.
Both explanations are identical.

Here, we have implicitly assumed that the eigenstates of the
current operator Î discussed in Sec -B are transmitted wave
packets for positive currents, and reflected ones for negative
currents, which corresponds to momentum eigenstates of an
operator related to the total momentum operator.

II. NUMERICAL RESULTS

In the following subsections, the BITLLES simulator is used
to predict the electrical characteristics of an RTD consisting
on two highly doped drain-source GaAs regions (the leads),
two AlGaAs barriers and a quantum well.

A. Coulomb correlations in DC scenarios

As a first example, we consider the influence of the (many-
body) Coulomb correlations even for the DC current-voltage
characteristic. Although the displacement current is zero here
when time-averaged, the explicit correct consideration of
many-body Coulomb effects have effect also on the DC
properties.

In Figure 5, we present a comparison between three different
current-voltage characteristics: (a) using the many-particle al-
gorithm described in section I (solid circles), (b) neglecting the
interaction between the active region and the leads, i.e. using
standard Dirichlet external bias boundary conditions (open
circles), (c) using these Dirichlet conditions and switching off
the Coulomb correlations in the active region (open triangles).
As it can be observed, the differences between these three
approaches appear not only in the magnitude of the current
but also in the position and shape of the resonant region [9],
[15].

B. Coulomb correlations in high frequency scenarios

We present the transient current response, Itran(t), when
an input step voltage is applied in the negative differential



Fig. 5. RTD Current-voltage DC characteristic. Results taking into account
the Coulomb correlations between the leads and the active region are presented
in solid circles. Open circles refer to the same results neglecting the lead-active
region interaction. Open triangles refer to a wholly non-interacting scenario,
i.e. both coulomb interaction between the leads and the active region and
coulomb interaction among electrons within the active region are neglected.

Fig. 6. Itran(t) an its Fourier transform in inset a and b respectively. The
BITLLES numerical results are compared with analytical RLC circuits.

conductance region (see the inset of Fig. 6). As pointed out
in the inset 1a, Itran(t) manifests a delay of about 0.1ps
with respect to the step input voltage due to the dynamical
response of the electric field in the leads. After this delay, the
current response becomes RLC-like (dashed and dashed-dotted
analytical lines), i.e. purely exponential. Fourier transforming
Itran(t) (inset b) and comparing the result with the single pole
spectra (i.e. the Fourier transform of the RLC-like analytical
responses represented by dashed and dashed-dotted lines), we
are able to estimate the cut-off frequency (about 1.6 THz for
this particular device) and the frequency offset (about 0.76
THz ) due to the delay [16], [5].

C. Current-current correlations

Finally, we show the ability of BITLLES to compute noise
features. We discuss how the many-particle Coulomb correla-
tions affect the Fano factor (i.e. zero frequency noise in units
of average current). We investigate the correlation between an
electron trapped in a resonant state during a dwell time τd and
the ones remaining in the left reservoir. This correlation occurs
essentially because the trapped electron perturbs the potential
energy felt by the electrons in the reservoir. In the limit of non-
interacting electrons or mean field approximations, the Fano
factor will be essentially proportional to the partition noise.

However if the Coulomb correlations are self-consistently

Fig. 7. Fano Factor evaluated as a function of the RTD bias voltage.

included in the simulations, such a result is no longer obtained
(see Fig. 7). Roughly speaking, an electron tunneling into the
well from the cathode raises the potential energy of the well
by an amount of e/Ceq , where e is the electron charge and Ceq

the equivalent capacitance of the structure. As a consequence,
the density of states in the well is shifted upwards by the same
amount (see Fig. 8) [5].

e/Ceq

Resonant 
energy

Quasi 
Fermi 
levels

Shifted 
Resonant 
energy

Cathode 

Anode

Cathode 

Anode

Fig. 8. Schematic representation of the RTD band diagram deformation
caused by a particle tunneling through the well.

This phenomenon can affect the noise in the following
ways: if the resonant energy ER1 is over the bottom of
the conduction band in the emitter, then when an electron
enters into the well the density of states inside the well
is raised without too much changing the transmittance of
the sample. The noise remains in the sub-poissonian regime
already present in the limit of partition noise. Contrarily, if the
resonant energy is below the conduction band in the emitter,
the presence of an electron in the well makes accessible the
resonant energy to other electrons staying near the bottom of
the emitter conduction band. Therefore, additional electrons
in the emitter can tunnel into the well thanks to the first
transmitted electron. Under these circumstances, the Coulomb
interaction tries to regroup the carriers, showing a super-
poissonian noise behavior. Due to our accurate treatment of
the many-particle Coulomb correlations, BITLLES captures
trivially these and other Coulomb blockade effects.



III. CONCLUSION

As the size of the electron devices reaches the deep
nanoscale regime, electron dynamics are determined by the
quantum nature. At these scenarios, the role of the displace-
ment current and the multi-time measurement plays cannot be
underestimated when determining AC, transients, noise,etc. In
this work we have presented a formalism, based on the use of
conditional wave functions with Bohmian trajectories, that is
able to capture the role of the previous two mentioned issues
[5]. This original formalism has been translated into a ver-
satile time-dependent 3D electron transport simulator named
BITLLES [6], capable of capturing many-particle transport
phenomena (at a level comparable to the Time Dependent
Density Functional Theories). The key point of our novel
simulator relies on a recently demonstrated algorithm capable
of transforming the many-particle Schrödinger equation of N
particles into N single-particle pseudo-Schrödinger equations.
BITLLES solves the many-particle Coulomb correlations by
means of multiple Poisson equations self-consistently coupled
to these N time-dependent single-particle pseudo-Schrödinger
equations. Accurate boundary conditions capable of assuring
“overall charge neutrality” and “current conservation” in time-
dependent scenarios describing nanoelectronic devices are
obtained by including the Coulomb correlations between the
leads and the active region. In addition, the consideration of
the quantum multi-time measurement with wave functions plus
Bohmian trajectories allows for a quite simple implementation.
The (random) trajectories do themselves select the eigenstate
after each measurement. The BITLLES simulator constitute
then a general purpose simulator specially attractive to be
applied to describe AC, transient and noise features of novel
nanoelectronic structures. As an example, we have presented
three important electrical characteristics of a RTD: DC, AC
and current fluctuations.
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