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Abstract—Power dissipation constitutes a major constriction
in modern and future nanoelectronic design [1]. In this context,
predictive models elucidating new criterions to control Joule
heating would be valuable. In this work we reveal how an
accurate formulation of the many-body Coulomb correlations
among carriers can lead to new perspectives on the design of
power-optimized electron devices. In particular, we show that for
a ballistic semi-classical system the rate at which carriers gain (or
loose) kinetic energy is a function of carrier-carrier correlations
and differs in general from the expected value 〈I〉 · 〈∆V 〉.

I. INTRODUCTION

Most electron transport models assume electron-phonon
interaction as the only one mechanism of energy transfer
among device’s constituent degrees of freedom. Therefore, in
ballistic scenarios energy is considered to be a constant of
movement for each electron and the amount of kinetic energy
gained by the carriers in the active regions to be ultimately
transferred as heat to the drain at a rate equal to 〈I〉 · 〈∆V 〉
[2], [3].

However, while shrinking device dimensions reduces the
number of carrier-phonon collisions along the device active
region, the closer proximity of the high-density source, drain,
and gate regions unavoidably increases the strength of carrier-
carrier interaction, so that reaching ballistic transport may
remain unattainable [4]. In this context, energy is no longer a
constant of motion for carriers even if their mean-free path is
larger than the device active region. The rate of gain of kinetic
energy in the (open) active region is no longer 〈I〉 · 〈∆V 〉 but
a direct function of carrier-carrier correlations. It is in this
regard that, since inter-particle collisions simply redistribute
the momentum among carriers, electron correlations could in
principle be designed to manipulate the way kinetic energy is
distributed along the different regions of electronic devices,
and ultimately, use this information to spatially control the
power dissipation.

II. ELECTRIC POWER IN CORRELATED OPEN SYSTEMS

With the aim of identifying the effects that carrier-carrier
correlations introduce on the mean value of the electric power,
here we simply switch-off electron-phonon interactions, i.e. we
condider a ballistic scenario. In this context, the electric power
does no longer refer to the rate at which carrier’s kinetic energy
is transferred to the underlying atomic structure, but defined
as the time derivative of the work done by a (self-consistent)
electric field over the N carriers composing the electronic

device. This is, by definition, the rate at which carriers gain
or loose kinetic energy. In what follows we show that when
carrier-carrier correlations are taken into consideration, the
standard picture in which carriers loose their kinetic energy in
the drain at a reate equal to 〈I〉 · 〈∆V 〉 (in ballistic systems)
is no longer accurate.

A semi-classical description of the time-evolution of a
classical trajectory ~rk [t] in the real space leads to the standard
Hamilton equations of motion

d~pk [t]

dt
=

[
−~∇~rkH ({~r} , {~p [t]})

]
{~r}={~r[t]}

, (1a)

d~rk [t]

dt
=

[
−~∇~pk

H ({~r [t]} , {~p})
]
{~p}={~p[t]}

, (1b)

where electronic conjugate coordinates are collectively de-
noted in the configuration space by {~r} = {~r1, ..., ~rN} and
{~p} = {~p1, ..., ~pN}. The many-body Hamiltonian in (1) can
be simply written as

H ({~r} , {~p}) =
N∑

k=1

{
K (~pk) +

qk
2
Wk ({~r})

}
, (2)

where

K (~pk) =
(~pk)

2

2mk
, (3a)

Wk ({~r}) =
N∑
j=1
j 6=k

qj
4πε |~rk − ~rj |

, (3b)

and qk, mk and ε are respectively the charges and effective
masses of the carriers and the dielectric permittivity.

From equation (1a), the time-derivative of the kinetic energy
of the carriers (3a) can be written as

Pk(t) =
dK (~pk [t])

dt

= −qk~vk [t] ·
[
~∇~rkWk ({~r})

]
{~r}={~r[t]}

= −qk~vk [t] · ~Ek ({~r [t]}) , (4)

where ~Fk = −qk · ~Ek ({~r [t]}) is the electrostatic force acting
over electron k.



Under an hydrodynamic approach, the next equality holds

qk~vk [t] ·
[
~∇~rkWk ({~r})

]
{~r}={~r[t]}

=
dWk ({~r [t]})

dt
−

−qk

N∑
j=1
j 6=k

~vj [t] ·
[
~∇~rjWk ({~r})

]
{~r}={~r[t]}

, (5)

and introducing it into (4), we can reexpress the rate at which
kinetic energy is gained or loosed by each electron as

Pk(t) =
dK (~pk [t])

dt
= −dWk ({~r [t]})

dt
+

+ qk

N∑
j=1
j 6=k

~vj

[
~∇~rjWk ({~r})

]
{~r}={~r[t]}

. (6)

Looking now at the kinetic energy associated to a volume
Ω delimited by the surfaces Si and Sf both perpendicular to
the spatial x axis respectively at xi and xf , using (6) we can
define the electric power in Ω associated to the k−th electron
as

Pk(t)|Ω =
dK (~pk [t])

dt

∣∣∣∣
Ω

=

= −dWk ({~r [t]})
dt

· θ~rk[t],xi
· θxf ,~rk[t]+

+qk

N∑
j=1
j 6=k

~vj

[
~∇~rjWk ({~r})

]
{~r}={~r[t]}

· θ~rk[t],xi
· θxf ,~rk[t], (7)

where the function

θ~rk[t]−xi
· θxf−~rk[t] = θ (~rk [t]− xi) · θ (xf − ~rk [t])

=

{
0 ~rk [t] 6⊂ Ω
1 ~rk [t] ⊆ Ω

, (8)

is zero valued everywhere except in the volume Ω.
Finally, the time average of the kinetic energy gained by

the carriers in the volume Ω can be written as

〈P (t)〉Ω =

〈
N∑

k=1

dK (~pk [t])

dt

〉
Ω

=

= lim
T→∞

1

T

( N∑
k=1

qk∆Wk +

+
N∑

k=1

N∑
j=1
j 6=k

∫ tf
k

ti
k

dt′qk~vj [t
′]
[
~∇~rjWk ({~r})

]
{~r}={~r[t′]}

)
, (9)

where we have used that the first term on the r.h.s of (8) is a
total time-derivative, and thus

∆Wk = Wk({~r[tfk ]})−Wk({~r[tik]}), (10)

with tik, tfk respectively the times at which the electron k enters
and leaves the volume Ω. In (9) it is implicitly assumed that
each electron enters the volume Ω just once. Although this
constraint can be easily relaxed, we assumed it just to keep
notation as clear as possible.

Equation (9) constitutes the main result of this work and
its physical meaning can be interpreted as follows. The rate
at which electrons gain kinetic energy in a particular region
of space (here the volume Ω) depends on two terms. The
first term on the right hand of (9) constitutes essentially
a single-particle contribution, while the second one is the
main responsible of introducing the effect of electron-electron
correlations into the mean value of the electric power. In order
to better understand the nature of the above two terms, let us
consider two different limits of equation (9).

First of all, let us consider the non-interacting limit of
(10), e.g. for very large applied bias. Under this limit, the
electrostatic potential Wk ({~r}) appearing in (9) is no longer
a function of the whole coordinate ensemble but just of ~rk, i.e.
Wk ({~r}) = V (~rk). As a consequence, only the first term on
the right hand side of (9) is non-zero valued, and we recover
the standard expression for the electric power in the limit of
single-particle (SP) dynamics, i.e.

〈P (t)〉SP
Ω =

〈 N∑
k=1

dK (~pk [t])

dt

〉SP

Ω

= 〈I〉 · 〈∆V 〉Ω. (11)

Secondly, for those volumes, Ω, large enough to include
the highly doped reservoirs of the electronic device, the open
region behaves as a closed system and carriers inside and
outside it are no longer correlated. Under this limit, it works
out that ∆Wk is for each carrier equal to the applied bias,
and then we recover again the standard value of the electric
power, which is now identical to

〈P (t)〉Large
Ω =

〈 N∑
k=1

dK (~pk [t])

dt

〉Large

Ω

= 〈I〉 · 〈∆V 〉Bias. (12)

The above two limits shed light on the nature of the two
terms conforming the r.h.s of (9) and suggest an interesting
question: can a proper design of device’s electrostatics be used
to redistribute power dissipation along the active region of an
electron device?. Cutting up the whole active region of the
device into a certain number of volumes ∆x, it turns out that
if we are able to control the second term in (9), it will be then
possible to manipulate the kinetic energy that carriers gain in
the different regions ∆x of the active region.

In order to better understand the meaning of this proposal, in
what follows we intend to simulate a N+NN+ nanostructure
and put numbers to the difference between equations (9) and
(11), and thus get an intuitive picture of the role carrier-carrier
Coulomb correlations.

III. COMPUTATION OF THE MANY-BODY COULOMB
CORRELATIONS

In order to evaluate expression (9), however, we need to
expressly introduce electron-electron Coulomb correlations
into our simulations. Since we cannot deal with the whole
number of degrees of freedom constituting a whole closed



electronic system, we need, in addition, a many-body approach
specific for open systems. We will use a recently presented
approach to describe carrier dynamics with the exact electron-
electron Coulomb correlations in open systems [5]. Under
this approach, the exact many-body Hamiltonian, for classical
systems, describing the dynamics of the N(t) carriers enclosed
in the active region of an electron device can be defined as:

Hopen
(
{~r}t, {~p}t, t

)
=

N(t)∑
k=1

{
K (~pk) + qkW̄k (~rk, t)

}
, (13)

where {~r}t =
{
~r1, ..., ~rN(t)

}t
and {~p}t =

{
~p1, ..., ~pN(t)

}t

are now the ensemble coordinates in the configuration space
of the carriers in the active region. The electrostatic potential
W̄k

(
~rk, t

)
in (13) is the solution of one particular 3D-Poisson

equation,

∇~rk

[
ε · ∇~rkW̄k (~rk, t)

]
= −ρ̄k (~rk, t) , (14)

where the single-particle charge density can be defined as

ρ̄k (~rk, t) =

N(t)∑
j=1
j 6=k

qj · δ (~rk − ~rj [t]). (15)

The solution of the Hamiltonian in (13) together with
equations (14) and (15), coupled to an appropriate set of
boundary conditions (see Ref. [6]), provides a set of Newton-
type equations [5],

d~pk [t]

dt
= −qk ~∇~rk W̄k (~rk, t)

∣∣
~rk[t]

. (16)

Expressions (14) to (16) lead to a set of N(t) Newton equa-
tions coupled through N(t) Poisson equations, meaning that
each carrier “sees” its own electrostatic potential. This equa-
tions provide an exact treatment of the many-body Coulomb
correlations in the simulated region. Although the r.h.s of (14)
does only depend on the N(t) carriers enclosed in the active
region at time t, the dependency of the electrostatic potential
W̄k

(
~rk, t

)
on the rest of the N−N(t) carriers can be taken into

account by imposing overall charge neutrality over the whole
system composed by the active region and the reservoirs [6].
Then, the local continuity equation for the electronic charge
leads to a rigorous definition of the (time-dependent) boundary
conditions for the Poisson equation in (14). Coupling then
these boundary conditions to an appropriate electron injection
model is sufficient to introduce quite rigorously the Coulomb
correlations among carriers inside and outside the active region
of the electron device (more details on the definition of the
time-dependent boundary conditions and the injection model
can be find in Ref. [6]).

IV. COMPARISON OF THE EXACT ELECTRIC POWER WITH
ITS SINGLE-PARTICLE LIMIT 〈I〉 · 〈∆V 〉

Finally, provided equations (16) to (15), we are ready
to evaluate expression (9). By comparing it with its non-
interacting limit (11), we will be able to evaluate the con-
tribution of the many-body Coulomb correlations into the rate

Fig. 1. Schematic picture of the simulated Silicon N+NN+ resistor. N+ =
6.25E18, Lx = 10nm,Ly = 30nm,Lz = 30nm. N referes intrinsic
Silicon.
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Fig. 2. I vs V characteristics for the nanostructure of Fig. 1 with two different
dielectric permittivity spatial distributions. In circles, we consider an intrinsic
active region with an homogeneous relative permittivity all long, εr = 11.7.
In squares, we split the active region into two well differentiate regions, both
intrinsic, but now with two different relative permittivities, εr = 2.5 in the
left half part of the active region, and εr = 30.0 in the right half side.

at which electrons gain or loose kinetic energy. As a simple
example, we consider here a N+NN+ structure with Lx =
10nm,Ly = 30nm,Lz = 30nm and N+ = 6.25E18cm−3

(see Fig. 1). In order to enlighten the role of the carrier-carrier
Coulomb correlations taking place in this nanostructure, we
consider two different electrostatic scenarios. On one hand,
we consider an intrinsic active region with an homogeneous
relative permittivity all long, εr = 11.7. On the other hand, we
split the active region into two well differentiate regions, both
intrinsic, but now with two different relative permittivities,
εr = 2.5 in the left half part of the active region, and εr = 30.0
in the right half side.

In figure 2 we present the characteristic I(V ) curves for
the two active regions described above. Let us notice that a
change on the dielectric permittivity along the active region
will not introduce any difference on the mean value of the
electrical currents in the saturation region (at very large bias).
However, due to intrinsic differences associated to different
electrostatic permittivities, the average currents are no longer
equal at intermediate bias.

In figures 3 and 4 we represent the spatial distribution of the
difference between equation (9) and its non-interacting limit
(11) for the two simulated structures. We have split up the
active region into 20 infinit volumes Ω with ∆x = 0.5nm.
Two well differentiate spatial regions can be observed in figure
3, one where (9)-(11)> 0, and the other where (9)-(11)< 0.
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Fig. 3. Spatial distribution of the difference between equation (9) and its
non-interacting limit (11) for an homogenious dielectric permittivity. The
active region has been split up into 20 infinit contiguous volumes Ω. Carrier
“bunching” causes a positive difference between the exact value of the electric
power spatial density and its non-interacting limit 〈I〉 · 〈∆V 〉 value. The
contrary happens in presence of “antibunching” of carriers.
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Fig. 4. Spatial distribution of the difference between equation (9) and its non-
interacting limit (11) for bipartite dielectric permittivity. The manipulation of
the active region electrostatic parameters can be designed to increase bunching
and antibunching dynamics. The discrepancy between the kinetic energy gain
rate and 〈I〉 · 〈∆V 〉 can be then stressed.

These two regions are placed, one close to the source reservoir
and the other close to the drain, indicating that carrier-carrier
correlations induce an increase of the rate of kinetic energy
gain close to the source and viceversa for those electrons
approaching the drain. Intrinsic electrostatic variations induced
by a change on the dielectric permittivity clearly affect this
many-body behavior. In figure 4, it can be observed how the
above deviation from the non-interacting picture (11) can be
stressed if we know how to modify intrinsic electrostatics.
These results might be better understood by looking at the
mean potential energy distribution along the active region. In
figure 5 we can see how a spatial variation on the relative
permittivity noticeably modifies the conduction band surface.
In this regard, it is quite notable that there exists a close
correlation between the shapes on figure 5 and those in figures
3 and 4. In this regard, it can be inferred a close relation
between the “bunching” and “antibunching” of carriers and
the positive and negative signs of the difference (9)-(11).

V. CONCLUSION

The closer proximity of the high-density source, drain, and
gate regions unavoidably increases the strength of carrier-
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Fig. 5. The manipulation of the active region dielectric permittivity induces
a change on the average conduction band distribution that modifies the way
carriers interact with each other.

carrier interaction, so that reaching ballistic transport may
remain unattainable. In this context, energy is no longer a
constant of motion for carriers even if their mean-free path
is larger than the device active region. The rate of gain
of kinetic energy in the (open) active region is no longer
〈I〉 · 〈∆V 〉 but a direct function of carrier-carrier correlations.
In this work we have shown how a proper modification of
certain underlying material electrostatic properties such as
the dielectric permittivity can help us in controling the way
carriers gain or loose kinetic energy, and thus, the way this
energy is finally going to heat up the underlying atomic
structure. Bunching and antibunching carrier dynamics seem
to play a crucial role on the determination of the difference
between the many-body electric power and its single-particle
limit. Further research must be still devoted to understand the
role that carrier-carrier correlations play on the way kinetic
energy is gained and finally dissipated in electronic devices.
This work opens a new route to study and even to maniulate
these variables through a proper design of the underlying
structure electrostatic properties.
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