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Abstract—We propose a model for the numerical

simulation of a two-terminal scanning gate spec-

troscopy experiment on bilayer graphene in the

Quantum Hall regime. We start from the Chalker-

Coddington random network model and link the

model parameters with some of the relevant quantities

in the experimental setup. The comparison between

the simulation and the measurement results show a

good qualitative and in several ways, quantitative

agreement.

INTRODUCTION

The Integer Quantum Hall effect (IQHE) is a

relevant behavior of two-dimensional disordered

electron systems in a strong perpendicular magnetic

field. Since its discovery in 1980, it has been

attracting significant interest, prompted, on the one

hand, by the search for a satisfactory understanding

of the physical phenomena involved, and, on the

other hand, by the possibility of exploiting the

precision in the conductance quantization to define

the international standard for resistance in terms of

fundamental constants alone.

Actually, there are three known distinct types of

IQHE: beside the conventional effect characteristic

of (non-intrinsically) two-dimensional semiconduc-

tor systems, a second and a third type of behav-

ior have been observed in monolayer and bilayer

graphene [1], respectively. The discovery of the

IQHE in graphene has paved the way for imple-

menting a new metrological standard at relatively

low magnetic fields and even at room temperature,

and it has opened the issue of the extent to which

the effect in these novel materials shares the same

explanation with that in ordinary two-dimensional

electron systems.

Here we present simulation results for magneto-

transport in bilayer graphene based on a model ini-

Fig. 1. Depiction of a typical disorder potential. The map at the

bottom shows the level curves for a value close to the average of

the potential. A possible percolating path going across several

saddle points of the potential (circles) is highlighted.

tially developed for conventional two-dimensional

systems; in order to make a close comparison

with experimental data possible, we simulate ex-

periments of scanning probe spectroscopy (SGS), a

technique particularly suitable for the investigation

of the IQHE, due to the possibility to perturb, with

high spatial resolution, the localized states induced

by the magnetic field.

MODEL

Although more detailed but complex descriptions,

for example tight-binding (as in [2]) or ~k · ~p [3] (as

in [4]), can be used, here we adopt a simpler repre-

sentation of the IQHE as a percolation phenomenon,

refering, in particular, to the model proposed by

Chalker and Coddington [5], [6], which has proved
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Fig. 2. Sketch of the adopted network model: the arrows

describe the drift of electrons around the hills (+) and valleys

(-) of the potential, while the scattering matrices S and S′ char-

acterize the tunnelling at the saddle points. Adapted from [6].

to capture the main physics of Quantum Hall trans-

port. The validity of the model is restricted to two-

dimensional systems in the presence of a disorder

potential V (x, y) and of a magnetic field for which

|lB∇V (x, y)| ≪ h̄ωc, where lB is the magnetic

length, ωc is the cyclotron angular frequency, and h̄

is the reduced Plank constant. In these conditions

the electrons can be semiclassically described as

following closed equipotential orbits and tunnelling

at the saddle point of the potential, where the

orbits get close to each other. In this view, the

current can cross the sample only percolating along

equipotential paths connecting localized electronic

states (Fig. 1). The model describes the system

as a regular network, with meshes corresponding

to localized current loops circulating around the

hills and valleys of the potential, and the nodes

corresponding to the saddle points of the potential

(Fig. 2).

The scattering properties at each node are de-

scribed by a 2 × 2 scattering matrix. As a result

of the constraint of unitarity, the matrix is specified

by the value of a single real parameter; at the

lowest level of approximation, this parameter can

be considered dependent only on the difference

between the energy of the incident electron and the

potential at the saddle point. The network includes

two kinds of matrices: their different dependence on

the parameter accounts for the different arrangement

of the maxima and the minima of the potential

around the saddle points they describe. The disor-
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Fig. 3. Illustration of the model used to establish a link of the

random network model with some of the parameters that can be

tuned in the setup of a scanning gate spectroscopy experiment.

CQ is the quantum capacitance (per unit area) at the considered

saddle point.

der in the actual spatial distribution of the saddle

points is introduced by randomizing the phase shift

associated to the paths connecting nearest-neighbor

nodes.

We augment this model by taking into account

the modulation of the potential Uij associated to

the generic saddle point at (xi, yj) as a function of

the voltage applied to the backgate and to the probe

(VBG and VT , respectively: see Fig. 3) and of the

position of the probe. We also include a random

fluctuation of the potential in correspondence of the

saddle points.

In detail we set Uij = U
(0)
ij + δUij , where U

(0)
ij is a

randomly generated value for each saddle point, and

we evaluate δUij by solving the system obtained

coupling the expression for the variation of the

local density of charge δρij in terms of the voltages

applied to the backgate and to the probe with the

δρij expressed in terms of integrals of the local

density of states:



























































δρij = (CBG + CT,ij)
δUij

−e
− (CBGVBG + CT,ijVT )

ρ
(0)
ij + δρij =

+ e

∫ U
(0)
ij

+δUij

−∞

DOS(E − U
(0)
ij − δUij) [1− f(E)] dE

− e

∫

∞

U
(0)
ij

+δUij

DOS(E − U
(0)
ij − δUij)f(E)dE .



We indicated with ρ
(0)
ij the local density of charge

induced by the unperturbed potential U
(0)
ij , and with

CBG and CT,ij the coupling capacitances per unit

area between the back-gate and the graphene, and

the probe and the graphene, respectively. The term

e denotes the modulus of the electron charge, while

f(E) indicates the Fermi-Dirac occupation factor at

the energy E. We model the local density of states

LDOS(E) with a sum of Lorentzians centered at

the Landau energies of electron motion. We left

the broadening of the Landau levels as a fitting

parameter, assuming it, as a good approximation in

the physical conditions for which the model applies,

independent of energy and of the same order of the

potential fluctuations [7]. Moreover, we assume that

the potential, supposed slowly varying on a length

scale of the order of the lattice constant, induces

locally in the LDOS a rigid shift in the energy,

setting for the generic saddle point of coordinates

(xi, yj)

LDOSij(E,Uij) = LDOSij(E − Uij) .

It has been shown by means of self-consistent

calculations [8] that the experimental data for the

spatial dependence of the charge density induced by

the probe can be accurately fitted by the sum of two

two-dimensional Lorentzians, with the amplitude

linearly dependent on VT . The higher and narrower

of these Lorentzians describes the coupling between

the probe tip alone and the graphene, while the

lower and wider one accounts for the long-range

effects due to the actual structure of the probe.

In order to more easily obtain interpretable results,

we neglect long-range effects, modeling the depen-

dence of CT,ij on the node coordinates (xi, yj) as

a single two-dimensional Lorentzian.

The conductance through the network is computed

in the Landauer-Büttiker framework, partitioning

the network into slices and using a recursive scatter-

ing matrix approach for the evaluation of the overall

transmission matrix. Starting from the knowledge of

the scattering matrix associated to each slice, it is

furthermore possible to evaluate the current through

each node, and then to derive a map of the current

distribution inside the network.

RESULTS

Our simulations refer to a ≈ 2.5 × 6 µm2

graphene flake deposited onto a highly doped Si
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Fig. 4. Simulated conductance as a function of backgate

voltage around the n = 1 Landau level. The inset shows the

results of the measurements.
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Fig. 5. Maps of the modulus of the current density for the

values of VBG indicated by arrows in Fig. 4 (the images are

ordered for increasing values of VBG); the current injection is

from the lower side of the images.

substrate capped with a 300 nm thick SiO2 layer.

The sample is assumed at a temperature of 8 K and

biased with a voltage of 10 mV; the intensity of the

orthogonal magnetic field is 6.2 T.

We use a rectangular network of 38 × 76 nodes,

corresponding to an average distance between sad-

dle points of ≈ 60 nm. In the transverse direction we

enforce Dirichlet boundary conditions, thus assum-

ing perfect reflection from the edges parallel to the

current flow. For the two-dimensional Lorentzian

function approximating the spatial dependence of

the capacitance per unit area between the probe

and the flake, we consider a peak value of 0.5 ×
10−9 F cm−2 and a half width at half maximum

of 50 nm. The broadening assumed for the Landau

levels in the local density of states corresponds to a

disorder potential with fluctuations of the order of

10 meV.

We focus on the transition of the measured N-

shaped conductance around the n = 1 Landau level

(see Fig. 4).
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Fig. 6. Comparison between simulated and measured maps of

the variation of the conductance for the values of VBG indicated

by circles in Fig. 4, and for VT = 1 V.
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Fig. 7. Comparison between simulated and measured maps

of the variation of the conductance for VBG corresponding

approximately to the middle of the percolative riser, and for

VT = 1 V and VT = 1.5 V.

In Fig. 5 we show the maps of the modulus of the

current density for three values of VBG.

Compared to the measurements, the maps of

the probe-induced conductance variation ∆G that

we computed for different values of VBG along

the riser show a very similar density and intensity

of “hotspots”, and the same evolution into a less

intricate pattern and final disappearance when VBG

moves away from the middle of the riser (Fig. 6).

Furthermore, holding VBG constant and sweeping

VT , we observe the same tendency of hotspots to

grow and merge together (Fig. 7).

CONCLUSION

We performed numerical simulations of SGS

experiments on bilayer graphene in the Quantum

Hall regime, within a percolation model widely ac-

cepted for the description of IQHE in conventional

two-dimensional electron systems. We tested the

model against experimental data, tuning the free

parameters in order to optimize the agreement. The

comparison shows that the experimentally detected

behavior can be reproduced from a quantitative

point of view choosing typical values for the fitting

parameters. Our results provide support for the

validity of the adopted model for the description

of IQHE physics in bilayer graphene.
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