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Abstract—Band-to-band tunneling (BTBT) determines the on-
current in tunnel FETs (TFETs). There is a need to review
and recalibrate BTBT models used in TCAD tools, which were
developed when BTBT was essentially a leakage phenomenon.
Here, we consider the process of BTBT through staggered het-
erojunctions which find application in the design of TFETs having
high on-currents. We use a simple 1-D system and compare
the estimates of BTBT computed with a semi-classical WKB
approach and that obtained from a solution of Schrödinger’s
equation by a wavefunction matching procedure. We show
that the WKB method significantly overestimates the tunneling
current through heterojunctions.

Index Terms—Band-to-band tunneling, heterojunctions, com-
plex bandstructure, WKB, NEGF.

I. INTRODUCTION

Accurate and computationally efficient approaches to sim-
ulate band-to-band tunneling (BTBT) are required to opti-
mize the performance of modern semiconductor devices. In
particular, the design of Tunnel FETs (TFETs) requires very
reliable BTBT simulation models, since BTBT is responsi-
ble for Ion in TFETs, whereas it only determines leakage
currents in MOSFETs. TFETs can operate at lower supply
voltages than conventional MOSFETs, owing to their superior
(< 60 mV/dec) sub-threshold slope, and are hence attractive
for low power applications. However, it is difficult to achieve
reasonable on-currents (Ion > 100 µA/µm) in these devices.
Nevertheless, an appropriately designed heterojunction (see
Fig. 1) can achieve MOSFET-like Ion in TFETs [1]. From
this point of view, TCAD tools must be able to reliably handle
BTBT through heterojunctions.

It is known that a multiscale approach which captures
the complex bandstructure within the bandgap of the semi-
conductor is critical to reliably predict BTBT current through
homojunctions [2], [3]. Evanescent states in heterojunctions
depend on both materials forming the junction. However, semi-
classical schemes to handle BTBT through heterojunctions
(e.g. [4]) simply follow a region based approach, stitching
together the complex bands of the two materials. The accuracy
of computing BTBT current using this idea is not known. In
this work, we compare this semi-classical approach against the
results of an accurate quantum approach, using a simple 1-D
system.

GaAs0.35Sb0.65

In0.7Ga0.3As

n+

p+

i

Drain

Source

InAs

GaSb

0.36 eV

0.73 eV

0.15 eV

Gate

(a) (b)

Fig. 1. (a) Broken-gap band alignment in GaSb/InAs (from Ref. [7]). (b)
Schematic cross section of an N-TFET [1] with MOSFET-like on-current,
Ion = 190 µA/µm. Based on strain and composition, the alignment at the
p+-i junction could be broken or staggered.

II. PROCEDURE

A. Model system

Our model system is a p-n junction formed in a linear
chain of atoms described by a simple two-band second-nearest
neighbor tight binding model [5], [6]. A real p-n junction can
be regarded as a parallel stacking of such chains. This model
places a px orbital on an anion and an s-orbital on a cation as
shown in Fig. 2 and is known to capture the essential features
of the bandstructure of direct bandgap materials. There are
five parameters in this model – the on-site energies for the
s and px orbitals (Es, Ep), the nearest neighbor overlap of
an s and px orbital (Vsp), and the second-nearest neighbor
overlap of two s and px orbitals (Vs, Vp). These parameters
have to be obtained from the position of the valence (Ev) and
conduction (Ec) band edges and their corresponding effective
masses mv , mc (both defined to be positive and in units of the
free electron mass m0). We restrict ourselves to the case where
mv 6= mc, so that we can choose Vs = Vp = V0. Defining
η = (mc + mv)/(mc −mv) and C = h̄2/m0a

2, where a is
the lattice constant, we obtain

V0 =
2C

mc

1

η − 1
(1a)

Vsp = +
√
ηV0 (Ec − Ev) (1b)

Es = Ec − 2V0 (1c)
Ep = Ev − 2V0 (1d)

We now consider two direct bandgap materials A and B with
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Fig. 2. A p-n junction formed using a linear chain of atoms, showing inter-
atomic tight binding matrix elements [5]. V #

x = (V
(1)
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x )/2. On-site

elements are E(i)
s , E

(i)
p (i = 1, 2) for the s and px orbitals located in regions

1 and 2 respectively. The positive lobe of each orbital has been shown shaded.

a staggered (Type-II) band alignment as shown in Fig. 3(a).
Such an alignment provides a small effective bandgap Eg,eff

for tunneling and is of interest in TFET design. Following
[6], the tight binding matrix elements at the interface at x = 0
are written as an average of those in the materials on both
sides of the interface. We assume the electrostatic potential
under applied bias to be the same as that in a real p-n junction
(with doping concentrations NA1

, ND2
in regions 1, 2) under a

depletion approximation; the doping concentrations are chosen
so as to align the Fermi levels on the p and n sides of the
junction to the corresponding valence and conduction band
edges. Ignoring Fermi statistics, we thus obtain the built-in
potential w.r.t region 1, Vbi as

Vbi =
∆Ec −∆Ev

2
− Vt ln

(
ni1ni2
NA1

ND2

)
(2)

where ∆Ec = Ec2−Ec1 , ∆Ev = Ev1−Ev2 and ni, Vt are the
intrinsic carrier concentration and thermal voltage respectively.

B. Computation of tunneling current

The complex bandstructures of materials A and B are
computed using a generalized eigenvalue method [8] and are
shown in Fig. 3(b).

The BTBT tunneling current is written as

I =
2q

h

∫
T (E) (f1(E)− f2(E)) dE (3)

where T (E) is the transmission and f1(E), f2(E) are the
Fermi levels in regions 1, 2 respectively. An accurate compu-
tation of T (E) is performed using the wavefunction matching
method [9]. This is equivalent to the Non Equilibrium Green’s
Function (NEGF) method for the case of coherent transport,
but is simpler to implement and computationally more effi-
cient. A summary of the wavefunction matching algorithm is
presented in the Appendix. A semi-classical estimate using a
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Fig. 3. (a) Band alignment between materials A and B considered in this
work. These materials differ only in their electron affinities. Eg,eff is the
effective bandgap for band-to-band tunneling if material A is p-type and B is
n-type. Nc and Nv are the effective density of states in the conduction and
valence bands. (b) Real and imaginary energy bands of material A (solid) and
material B (dashed).

WKB approximation [10] for T (E) is given by

T (E) = −2
[ ∫ 0

x1

κ1(E − Ev(x))dx+∫ x2

0

κ2(E − Ev(x)−∆Ev)dx
] (4)

where x1, x2 are the classical turning points and κ1, κ2 are
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Fig. 4. Stitching of imaginary wavevectors across a heterointerface following
Ref. [4]. x1, x2 are the classical turning points at the energy E. The imaginary
wavevectors κ1, κ2 are obtained from the complex bandstructures of materials
in regions 1, 2 respectively.
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Fig. 5. Comparison of transmission T (E) and current calculated using quantum and semi-classical approaches in an (a) A-A homojunction and (b) A-B
heterojunction. The Fermi levels are assumed to coincide with the valence and conduction band edges on the p and n sides respectively.

the imaginary wavevectors in regions 1, 2. These are ob-
tained from the complex bandstructure shown in Fig. 3(b).
Note that we do not attempt to solve the transport problem
self-consistently with the electrostatics. Nevertheless, this is
not critical to our results, since we use the same potential
landscape to compute T (E) semi-classically and via the
wavefunction matching technique.

III. RESULTS AND CONCLUSION

See Fig. 5. The semi-classical WKB approach compares
very well with the quantum calculation for the case of a
homojunction in a direct bandgap material. This is consistent
with a result available in literature [10], which demonstrates

that the semi-classical WKB approach provides a good esti-
mate for T (E) in materials where a single imaginary band
connecting the real valence and conduction bands is the
dominant tunneling path.

On the other hand, the WKB approach significantly over-
estimates the current in the heterojunction. This could be due
to the discontinuity in the imaginary wavevector κ(x) at the
heterointerface, obtained by stitching the wavevectors on either
side of the interface (as seen, for example, in Fig. 4). A transfer
matrix based approach might hence yield better results. We
also believe that the stitching of imaginary wavevectors must
include a correction based on the connection rules for the
envelope functions across the heterojunction [11]. This will



be taken up in a future work.
Since a quantum calculation of T (E) is computationally

demanding for realistic devices, our study motivates the need
for better semi-classical approaches to handle BTBT through
heterojunctions. Further, our procedure can be used to study
this problem in other types of band alignments too.

APPENDIX
SUMMARY OF WAVEFUNCTION MATCHING

In this appendix, we summarize the steps involved in the
wavefunction matching procedure [9]. The system under study
is separated into a “device” region and “leads”, as shown in
Fig. 6.

1) Each of the matrices in Fig. 6 is of size N × N .
Obtain the N forward (+) and N backward (−) modes
[uL/R,n(±)], n = 1, 2, . . . N in each lead L/R, as the
eigenvectors of the generalized eigenvalue problem

−[BL/R][ci−1] + (E[I]− [HL/R])[ci]

− [BL/R]†[ci+1] = [0],

where [ci+1] = λn(±)[ci]. These modes have velocities
given by

vL/R,n(±) = −
aL/R

h̄
×

Im(λn(±)[uL/R,n(±)]†[BL/R]†[uL/R,n(±)]).

2) Compute the dual vectors [ũL/R,n(±)] and Bloch ma-
trices [FL/R(±)] defined as

[ũ†L/R,n(±)][uL/R,m(±)] = δn,m

[FL/R(±)] =
N∑

n=1

λn(±)[uL/R,n(±)][ũL/R,n(±)]†

3) Construct the self energies [ΣL(E)] = [BL][F−1L (−)]
and [ΣR(E)] = [BR]†[FR(+)].

4) Construct the auxiliary matrix [H] of size N(S + 2) ×
N(S+ 2), such that the block [Hi,j ] = [Hi,j ] for i, j =
0, . . . , S + 1 except for

[H0,0] = [HL] + [ΣL]

[HS+1,S+1] = [HR] + [ΣR].

5) Construct and solve the system of linear equations given
by (E[I]− [H]) [ψ] = [QL,m(+)], where

[ψ] = [ [c0], . . . , [cS+1] ]
T

[QL,m(+)] =


[X]
[0]
...

[0]

 and

[X] = [BL]
(
[FL(+)]−1 − [FL(−)]−1

)
[uL,m(+)].

6) Finally, the transmission

T (E) =

(+)∑
n,m

|tn,m|2,

i = 0 1 · · · S S + 1 · · ·· · ·

[HL][HL]

[BL] [BL] [BR] [BR][H0,1] [HS,S+1]a
2

[H1,1] [HS,S ] [HR] [HR]

Fig. 6. Matrices involved in the wavefunction matching procedure [9]. The
potential is assumed to be constant in the leads (shown shaded) but can vary
in the device (slabs 1, ..., S).

where tn,m =
√

vR,n(+)aL

vL,m(+)aR
τn,m and τn,m =

[ũR,n(+)][cS+1].
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