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INTRODUCTION

The tri-gate FET has been hailed as the biggest
breakthrough in transistor technology in the last 20
years. The increase in device performance (faster
switching, low power, improved short channel ef-
fects, etc.), coupled with the reduction in device
size, would allow for huge gains in the electronics
industry [1]. In this work, we investigate the per-
formance of the tri-gate FET when compared to the
planar counterpart, and show how quantum size
quantization and random dopant fluctuations (RDF)
affect the tri-gate FET performance and how to curb
these issues.

SIMULATION MODEL

A 3-D fully atomigtic quantum-corrected Monte
Carlo device simulator has been used in this work.
Quantum mechanical space-quantization effects
have been accounted for via a parameter-free effec-
tive potential scheme [2] and benchmarked against
the NEGF approach in the ballistic limit [3]. To treat
full Coulomb (electron-ion and electron-electron)
interactions properly, the simulator implements two
real-space molecular dynamics (MD) schemes: the
particle-particle-particle-mesh (P3M) method and
the corrected Coulomb approach. The essential
bandstructure  parameters (bandgap, effective
masses, and the density-of-states) have been
computed using a 20-band nearest-neighbour sp’d’s
tight-binding scheme.

DISCUSSION

The dimensions of the devices being simulated
are as follows (unless otherwise stated): Tox = 2nm,;
n’ polysilicon gate material; Lcy =18nm; Ny =
2x10" cm™; W = 10nm; S/D contact length = 31
nm; S/D junction depth = 15nm; S/D doping density
= 5x10" cm™; Ohmic S/D contact; technology node
voltage, Vpp = 0.8V.

Looking at Fig. 1 we can see both the planer and
the tri-gate transistors experience some fluctuation
in threshold voltage due to randomness in the chan-

nel region, but this deviation is smaller (~22mV) in
the tri-gate. Also, threshold voltage is much smaller
for the tri-gate FET. However, we see that when we
perform the same simulation with random dopants
in the S/D region the effects become very promi-
nent. Fig. 2 shows the percentage deviation for both
devices is much larger than in either of the previous
simulations, but we again see a much smaller
deviation in the tri-gate device (25%) when
compared to its planar counterpart (102%).

Next, a variety of methods were implemented to
limit the RDF, with the goal to decrease the percent
deviation and still maintain an acceptable level of on
current. Figs. 3-6 show the variation of ON current
as a function of channel doping density, S/D doping
density, S/D workfunction, and S/D junction depth.
Of all these, in Fig. 6, we see an increase in drive
current as junction depth increases because of the
decrease in resistance in both regions. Also noticea-
ble is that as we increase the junction depth we see a
decline in drive current variation.

CONCLUSION

The main findings are as follow: 1) carrier scat-
tering in a tri-gate FET leads to ON current degra-
dation of ~30% and hence cannot be ignored; 2)
RDF is smaller in the tri-gate FET; 3) RDF due to
the S/D discreteness can be engineered by adjusting
the S/D junction depth.
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Fig. 3. RDF as a function of channel doping density. Fig. 6. RDF as a function of source/drain junction depth.
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