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Semiconductor nanowires (NWs) offer plenty of
opportunities in quasi-one-dimensional physics and
can also be considered to be promising candi-
dates for nanoelectronics. In practical applications,
sample-to-sample variability becomes a crucial is-
sue necessitating statistical study of conductance
properties. A standard approach to study a disor-
dered wire is to introduce an extra random potential
6V. Recently developed equivalent model (EM)
offers an effective way to perform such studies in
realistic NWs [1]. Here we present the results on
universal transport properties of random NWs.

We consider a one-particle Hamiltonian

[Ag + V] In){n| + [win){n + 1| + c.c.], (D

where |n) represents the Ngy-dimensional EM basis
in the n-th unit-structure of a NW and /4, w define
the basis-transformed Hamiltonian in a regular wire
(Fig. 1). Given atomistic wire, the EM method
builds an equivalent quantum chain of low dimen-
sion Ngy with the same transport characteristics
[2]. Figure 1 shows an example of the EM used in
the simulations. Since the EM basis is delocalized
within each unit-structure, the statistical invariance
condition implies ¢V in the random-matrix form

<6Vv,u> =0,
<5Vv,u6Vv’p’> = az(éw’ 5;1;/ + 6\/// 6yv’)’

where v, u numerates the EM basis states and « can
be estimated from the microscopic Hamiltonian.
The physical characteristics of the model Egs. (1),
(2) are the localization length A(E, a). The R-matrix
propagation technique [3] is used to evaluate two
boundary blocks Gy and Gyy of the Green’s func-
tion in a closed system of N unit-structures. A(E, )
can be calculated from the eigenvalues of G, NG;VR,

)

in the limit of large N (see Fig. 2). Figure 3 presents
the computed localization length in a wide range of
parameter . The E-dependence at o = 0.001 eV is
found to correlate with transport properties of the
original tight-binding model with surface roughness
without strain.

To establish a relation between the localization
length and the conductance properties, we have cal-
culated statistics of the transmission function within
the same a-interval. Figure 4 shows an example of
the averaged 7 and the statistical variation 72 — T2
at @ = 0.02eV. The horizontal plane indicates
the maximum dispersion at [72 — T 2]max ~ 2/15
consistent with the classical result for the universal
conductance fluctuations [4]. Detailed study exhibits
similar L-dependence at all As for Ny, > 1 open
channels (Fig. 5). In particular, we have observed
the weak localization regime up to L ~ A (Thouless
criterion) where the statistical dispersion reaches the
classical value. This findings suggest applicability
of the macroscopic description to the atomistic
transport in realistic NWs which may have impact
on statistical modeling of NW MOSFETs.
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Fig. 1. EM method: The tight-binding picture (a) is trans-
formed to a low-D equivalent chain (b). Band structure in two
EMs (Ngm = 36, 53) for a thin p-Si NW used in the simulations.
AE is the energy window reproduced by the EM.
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Fig.2. Asymptotic behaviour of the eigenvalues z; of G1yGy .
The minimum asymptotic value determines the localization
length A in the system (a) which is to be compared with the
ordinary tunneling at small & (b).
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Fig. 3. The localization length A(E, ). Contour plot illustrates
enhancement of the ordinary tunneling. Shadow area represents
delocalized states in the system.
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Fig. 4. 7_"(E,L) and varT(E, L) at fixed a. The horizontal

plane corresponds to the classical result for the conductance
fluctuations.
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Fig. 5. Universal behaviour of the transmission function.

The Thouless condition f(/l) =1 and the maximum statistical
dispersion ~ 2/15 at A = 20nm (upper panel) and A = 220 nm
(low panel).
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