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INTRODUCTION AND MOTIVATION

Modeling electronic devices in the transient 
regime is a topic of great interest in designing 
analog and digital electronic circuits. It allows 
optimizations of devices with respect to achieving 
high switching and cut-off frequencies. 
Specifically, efficient sources, mixers, and other 
functional blocks in the terahertz frequency 
window (300 GHz – 3 THz) have important 
applications in chemical and biological sensing, 
medical imaging, astronomy and 
communications. A possible path toward 
achieving efficient electronic circuitry in the 
terahertz window is increasing the frequency at 
which solid-state electronic devices can amplify 
and oscillate. 

In this paper, we develop the theory and 
computational methods for modeling the transient 
regime in two-terminal ballistic nanostructures 
connected with dissipative macroscopic contacts. 
The question we want to answer is how the 
current, as well as the potential and charge 
density, evolve in time in response to a sudden 
change in bias. The ballistic nanostructure 
assumption is meaningful, since the dephasing 
length in the contacts is of the same order of 
magnitude as the size of contemporary circuits 
(~50 nm for heavily doped Si at T = 300 K). 1 The 
two-terminal set-up is an important case, having 
in mind that the fastest devices today are Schottky 
and resonant tunneling diodes (RTDs), with 
RTDs already being able to oscillate above 1 THz 
frequencies.2 This is largely due to diodes being 
much less affected by parasitic capacitances that 
are intrinsic to complex transistor layouts. 

THEORY

Our approach is based on the density matrix 
theory in the open system formalism. The model 

nanostructures we consider are represented 
through the density matrix which evolves in time 
through the interaction of the nanostructure with 
its environment. Assuming that the initial density 
matrix of the total system is separable (not 
entangled) tot = C S, where C and S are the 
contact and nanostructure (S stands for “system”) 
density matrices, respectively, we have 
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Equation (1) describes the subdynamics of the 
nanostructure, where F(t) is the time evolution 
operator. The time evolution operator can be 
conveniently derived in the case of relevance: that 
of the relaxation time in the contacts ( = 10 - 100 
fs) being much shorter than the total relaxation 
time ( S = 10 – 1000 ps). The solution to Eq. (1) 
gives the time evolution of the nanostructure 
distribution functions. 3,4 When coupled with the 
solution to the time-independent Schrödinger 
equation, with the Hartree potential included, Eq. 
(1) leads to a complete model for calculating the 
time dependence of the current, as well as charge 
density and potential inside the nanostructure. 

SIMULATION

The computational algorithm consists of 
coupling the equation which is the solution to Eq. 
(1), the time-independent Schrödinger equation, 
and the Poisson equation, in both 1D and 2D 
applications. Real-space modeling is implemented 
by using the central finite-difference and finite 
element methods (in 1D and 2D, respectively), 5

while the time dependence is computed using the 
backward finite-difference. The resolution in 
space (~0.5 nm) was chosen to allow sufficiently 
dense discretization of the continuous energy 
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spectrum of the model nanostructure, while the 
resolution in time is no greater than .

RESULTS 

Figures 2 and 3 show sample results of the 
computation for the case of 2D narrow quantum 
point contact (QPC), shown in Fig. 1. The results 
are representative of the range of modeled 
nanostructures in 1D and 2D: the time evolution 
of the nanostructure is dependent on its 
transmission properties and the scattering 
mechanisms in the contacts. Specifically, as long 
as  << S, contacts with longer relaxation time 
allow shorter time to steady state, as shown in 
Fig. 3. The red curve in Fig. 3 is on the edge of 
the allowed region (  << S), but it helps to 
visualize the general trend. 
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Fig. 1. The narrow QPC structure schematic, with different

regions and associated boundary conditions (lower panel), 

and the charge density and potential in equilibrium (upper 

panel). The sheet density is 2.3 x 1011 cm-2, T = 77 K, and 

the momentum relaxation time is  140 fs. 
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Fig. 2.  Dependence of the transient current density on the 

QPC width. 

Vbias=0.1 V, QPC width 7 nm

Fig. 3.  Dependence of the transient current density on the 

relaxation time in the contacts. 
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