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INTRODUCTION

With the shrinking dimension of electronic
devices, quantum transport attracts increasing
interest. The non-equilibrium Green’s function
(NEGF) formalism [1] provides a very general
framework for quantum transport, but it is
numerically expensive when applied on atomistic
tight binding representations. So  far,
computational burden (in memory and CPU time)
limits the maximum diameter of nanowires that
are solvable within atomistic NEGF to about 8nm.
Several methods are developed to reduce the
numerical costs. However, these methods are
either limited to effective mass model [2] or to
small cross-sections perpendicular to the transport
direction [3]. In this work, it is demonstrated how
to apply the concept of low rank approximation
[4] to the NEGF method in atomistic tight binding
representation. Using this method, transport in a
12nm squared Si nanowire is solved.

METHOD

All electrons are represented in atomistic multi
band tight binding models. If a device consists of
several millions of atoms, tight binding
descriptions yield millions of electronic states.
Only a small fraction of these states contribute to
charge transport. In this method, the NEGF
equations of the tight binding Hilbert space of
rank N are transformed into a Hilbert space of
rank #» that is spanned by only these relevant
states. The maximum achievable speed up is
given by (w/N)’ and the maximum reduction of
required memory by (n/N)°.

First, the energy dependent contact self-
energies are calculated within the transfer matrix
method of [5] and folded into the device
Hamiltonian to represent an open system through
the nonhermitian Hamiltonians H(E) for each
considered energy kL. For every H(E), those n
right sided eigenstates are calculated that have

eigenvalues closest to £. These eigenstates
represent the »n columns of a rectangular
transformation matrix 7' (N rows and » columns).
The NEGF equations are transformed by 7' into
the smaller Hilbert space and solved therein.

RESULTS

The new method is demonstrated in a squared
Si nanowire with Snm diameter in a sp’d’s” tight
binding representation [5] that is small enough
such that the exact solution can be computed.
Actually, 10% of the original matrix rank is
sufficient to reliably solve the transport problem
as shown in Figs. 1-4: Figure 1 shows the density
through the center in Fig. 2. Figure 2 shows the
small deviation in electron density; Figures 3 and
4 show the transmission for wvalence and
conduction band of both cases. Both electron
density and transmission can be reproduced with
10% of the matrix rank. The observed speed up
factor of 8 is effectively limited by the solution of
the eigenvalue problem. Nevertheless, the
reduced problem rank allows solving NEGF
equations beyond common computational
limitations: Figures 5 and 6 show the transmission
for a 12nm cross-section nanowire in the same
tight binding representation, when the matrix rank
is reduced down to 10%. This calculation was
done on only 288 CPUs in 2200 minutes, whereas
an exact calculation is a task for high-end
supercomputers and has not been attempted.
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Fig. 1. Electron density through the center in Fig. 2, of the

exact NEGF calculation (circle) and of NEGF calculations

with 10% of the original matrix rank.
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Fig. 2. Relative deviation in electron density in a squared,
Snm diameter Si nanowire of the exact NEGF calculation
and of NEGF calculations approximated with 10% of the
original matrix rank. Transport is along the x-axis.
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Fig. 3 Total transmission of the exact NEGF calculation
(solid) and of NEGF calculations with reduced matrix rank
for the valence band of the 5nm diameter Si nanowire in
Fig.2.
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Fig. 4 Total transmission of the exact NEGF calculation
(solid) and of NEGF calculations with reduced matrix rank
for the conduction band of the Snm diameter Si nanowire in
Fig.2.
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Fig. 5. Total transmission calculated with 10% of the original

matrix rank for the valence band of a 12nm diameter Si

nanowire. The inset shows the schematic of the nanowire.
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Fig. 6. Total transmission calculated with 10% of the original

matrix rank for the conduction band of the 12nm diameter Si

nanowire.
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