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INTRODUCTION—WHAT 
THE PAST HAS GIVEN US 

While post people can relate the past with 
quite ancient history—greeks, romans, and so on, 
my ancient past in computational electronics 
begins only half a century ago.  This is certainly 
ancient enough.  But, at that time, semiconductor 
device simulation based upon partial differential 
equations had not yet appeared, even though the 
flow of transport was understood [1].  But, this 
changed quickly with Gummel’s one dimensional 
simulation [2]. Within a few years, there were 
fully two-dimensional simulations of both bipolar 
and field-effect transistors [3,4,5].  The Monte 
Carlo technique was introduced by Kurosawa [6] 
to study hot carrier transport, and this soon 
appeared in device simulation [7

Monte Carlo techniques themselves have 
progressed through the introduction of molecular 
dynamics approaches to carrier-carrier scattering 
[

].  It is important 
to note that such simulation techniques were 
difficult in these early days due to the generally 
slow behavior of the computers (as compared to 
today’s performance).  Yet, most of the numerical 
techniques in use today date from those days. 

8], carrier degeneracy [9], and non-equilibrium 
phonons [10].  The first of these has even been 
corrected for quantum effects such as the 
exchange interaction [11].  Inclusion of full 
energy bands has also appeared [12,13

QUANTUM TRANSPORT APPEARS  
]. 

The importance of quantum transport to 
semiconductor devices, as they continued to 
evolve to ever smaller sizes, was discussed more 
than three decades ago [14].  First, simulations of 
these were approximate with quantum 

hydrodynamic equations [15], or effective 
potentials [16].  But, then more effective transport 
simulations, including Green’s functions, 
appeared for device simulation [17,18

WHAT DOES THE FUTURE HOLD 

].  Today, 
full quantum simulations, incorporating scattering 
and full band structure, are possible. 

Predicting the future is always dangerous, as 
one generally underestimates the progress that can 
be made by our community.  But, device sizes are 
progressing ever smaller, with normal 10 nm 
devices in the very near future, and single atom 
devices already existing [19

19

].  There will be 
demand for more intensive simulations, even 
though too much of our community still uses the 
ancient tools, and is rediscovering past history.  
But, the development of still more advanced 
simulation techniques allows us to more precisely 
study the relevant physics, which in turn allows 
better understanding of the experiments, an 
excellent example of which is given in [ ]. 

 
In this talk, I will try to highlight the past, and 

illuminate how it has affected the present.  
Finally, I will speculate on what the future may 
hold. 
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